Matches in SemOpenAlex for { <https://semopenalex.org/work/W2508404709> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2508404709 abstract "In recent years, watermarking algorithms robust to the geometrical distortions have been the focus of research. Most of the proposed geometrical-transform-invariant algorithms are RST (Rotation, Scaling and Translation) invariant due to the fact that changing the image size or its orientation, even by slight amount, could dramatically deteriorate the performance of the watermark detection. Most of the existing RST invariant watermarking algorithms can be classified into several categories: RST invariant domain, salient feature, template, image decomposition and stochastic analysis based algorithms. An in-depth theoretical analysis of these algorithms is given in this thesis. With the detailed experimental results, the advantages and disadvantages of each algorithm are presented. This provides a solid basis for the further research in this field. Moreover, the clarification of the current algorithms' limitation can lead to new ideas of designing better algorithms. Based on the detailed analysis of the existing RST invariant watermarking algorithms, a novel feature-based RST invariant watermarking algorithm is proposed in this thesis. And, a framework is established to mathematically guide the watermark embedding process and analyze the performance of the watermarking algorithm like watermark embedding strength. Since it is difficult to model the entire image using a single mathematical model, the cover image is segmented into several homogeneous regions using the maximum a posteriority probability (MAP) segmentation. Each segmented-region of the image is modelled using a generalized Gaussian distribution model. Then the image can be approximated using a Gaussian mixture distribution model. And some rotation-invariant features are extracted from the cover image using the SIFT (Scale Invariant Feature) detection algorithm Image normalization is used to achieve scaling and translation invariance. Then, the user-defined disk regions centered at the well-selected feature points will be used for watermark embedding and extraction. In the watermark embedding process, the watermark is approximated as additive white Gaussian noise. And NVF (Noise Visibility Function) is used to adaptively adjust the watermark embedding strength. With the establishments of the stochastic models for the cover image and the watermark, it is easy to clarify the relation between the fidelity of the watermarked image and the embedding capacity in a more accurate mathematical way instead of the currently used empirical way. In the watermark extraction process, the linear correlation is used to detect the existence of the watermark. The experimental results demonstrate the proposed scheme is robust to RST transformation, noise pollution and JPEG compression. The established mathematical model for images provides a good analysis tool for watermarking algorithms, and can be further exploited and refined to give a better understanding of the various aspects of watermarking algorithms." @default.
- W2508404709 created "2016-09-16" @default.
- W2508404709 creator A5062514822 @default.
- W2508404709 date "2008-01-01" @default.
- W2508404709 modified "2023-09-23" @default.
- W2508404709 title "Rst invariance of image watermarking algorithms and the framework of mathematical analysis" @default.
- W2508404709 doi "https://doi.org/10.20381/ruor-19894" @default.
- W2508404709 hasPublicationYear "2008" @default.
- W2508404709 type Work @default.
- W2508404709 sameAs 2508404709 @default.
- W2508404709 citedByCount "0" @default.
- W2508404709 crossrefType "dissertation" @default.
- W2508404709 hasAuthorship W2508404709A5062514822 @default.
- W2508404709 hasConcept C102094743 @default.
- W2508404709 hasConcept C105795698 @default.
- W2508404709 hasConcept C11413529 @default.
- W2508404709 hasConcept C115961682 @default.
- W2508404709 hasConcept C121332964 @default.
- W2508404709 hasConcept C150817343 @default.
- W2508404709 hasConcept C153180895 @default.
- W2508404709 hasConcept C154945302 @default.
- W2508404709 hasConcept C163716315 @default.
- W2508404709 hasConcept C164112704 @default.
- W2508404709 hasConcept C171383496 @default.
- W2508404709 hasConcept C190470478 @default.
- W2508404709 hasConcept C33923547 @default.
- W2508404709 hasConcept C37914503 @default.
- W2508404709 hasConcept C41008148 @default.
- W2508404709 hasConcept C41608201 @default.
- W2508404709 hasConcept C62520636 @default.
- W2508404709 hasConceptScore W2508404709C102094743 @default.
- W2508404709 hasConceptScore W2508404709C105795698 @default.
- W2508404709 hasConceptScore W2508404709C11413529 @default.
- W2508404709 hasConceptScore W2508404709C115961682 @default.
- W2508404709 hasConceptScore W2508404709C121332964 @default.
- W2508404709 hasConceptScore W2508404709C150817343 @default.
- W2508404709 hasConceptScore W2508404709C153180895 @default.
- W2508404709 hasConceptScore W2508404709C154945302 @default.
- W2508404709 hasConceptScore W2508404709C163716315 @default.
- W2508404709 hasConceptScore W2508404709C164112704 @default.
- W2508404709 hasConceptScore W2508404709C171383496 @default.
- W2508404709 hasConceptScore W2508404709C190470478 @default.
- W2508404709 hasConceptScore W2508404709C33923547 @default.
- W2508404709 hasConceptScore W2508404709C37914503 @default.
- W2508404709 hasConceptScore W2508404709C41008148 @default.
- W2508404709 hasConceptScore W2508404709C41608201 @default.
- W2508404709 hasConceptScore W2508404709C62520636 @default.
- W2508404709 hasLocation W25084047091 @default.
- W2508404709 hasOpenAccess W2508404709 @default.
- W2508404709 hasPrimaryLocation W25084047091 @default.
- W2508404709 hasRelatedWork W1582860185 @default.
- W2508404709 hasRelatedWork W1965569486 @default.
- W2508404709 hasRelatedWork W1971615222 @default.
- W2508404709 hasRelatedWork W2002863074 @default.
- W2508404709 hasRelatedWork W2011050412 @default.
- W2508404709 hasRelatedWork W2047035515 @default.
- W2508404709 hasRelatedWork W2057758155 @default.
- W2508404709 hasRelatedWork W2118361924 @default.
- W2508404709 hasRelatedWork W2135932337 @default.
- W2508404709 hasRelatedWork W2138364905 @default.
- W2508404709 hasRelatedWork W2148182902 @default.
- W2508404709 hasRelatedWork W2359653486 @default.
- W2508404709 hasRelatedWork W2381887946 @default.
- W2508404709 hasRelatedWork W2481595537 @default.
- W2508404709 hasRelatedWork W2517146296 @default.
- W2508404709 hasRelatedWork W2552277250 @default.
- W2508404709 hasRelatedWork W2779177338 @default.
- W2508404709 hasRelatedWork W2946512930 @default.
- W2508404709 hasRelatedWork W3045684963 @default.
- W2508404709 hasRelatedWork W3190304555 @default.
- W2508404709 isParatext "false" @default.
- W2508404709 isRetracted "false" @default.
- W2508404709 magId "2508404709" @default.
- W2508404709 workType "dissertation" @default.