Matches in SemOpenAlex for { <https://semopenalex.org/work/W2508559081> ?p ?o ?g. }
- W2508559081 endingPage "e0161370" @default.
- W2508559081 startingPage "e0161370" @default.
- W2508559081 abstract "Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits." @default.
- W2508559081 created "2016-09-16" @default.
- W2508559081 creator A5002151282 @default.
- W2508559081 creator A5004430882 @default.
- W2508559081 creator A5005526520 @default.
- W2508559081 creator A5012630511 @default.
- W2508559081 creator A5022849737 @default.
- W2508559081 creator A5029524758 @default.
- W2508559081 creator A5029953642 @default.
- W2508559081 creator A5030062443 @default.
- W2508559081 creator A5033772480 @default.
- W2508559081 creator A5036656399 @default.
- W2508559081 creator A5049104921 @default.
- W2508559081 creator A5052209564 @default.
- W2508559081 creator A5057718357 @default.
- W2508559081 creator A5060267253 @default.
- W2508559081 creator A5070783794 @default.
- W2508559081 creator A5073090576 @default.
- W2508559081 creator A5075259926 @default.
- W2508559081 creator A5080832774 @default.
- W2508559081 creator A5081583330 @default.
- W2508559081 creator A5089493133 @default.
- W2508559081 date "2016-09-08" @default.
- W2508559081 modified "2023-10-18" @default.
- W2508559081 title "Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology" @default.
- W2508559081 cites W1554142716 @default.
- W2508559081 cites W1892293382 @default.
- W2508559081 cites W1935910619 @default.
- W2508559081 cites W2002252353 @default.
- W2508559081 cites W2034082973 @default.
- W2508559081 cites W2042986750 @default.
- W2508559081 cites W2043107286 @default.
- W2508559081 cites W2044539313 @default.
- W2508559081 cites W2046062863 @default.
- W2508559081 cites W2050122074 @default.
- W2508559081 cites W2051039710 @default.
- W2508559081 cites W2059252787 @default.
- W2508559081 cites W2061608490 @default.
- W2508559081 cites W2071756586 @default.
- W2508559081 cites W2091348515 @default.
- W2508559081 cites W2094397390 @default.
- W2508559081 cites W2095757396 @default.
- W2508559081 cites W2097908522 @default.
- W2508559081 cites W2099555477 @default.
- W2508559081 cites W2103441770 @default.
- W2508559081 cites W2106323601 @default.
- W2508559081 cites W2108234281 @default.
- W2508559081 cites W2114569364 @default.
- W2508559081 cites W2119169119 @default.
- W2508559081 cites W2122290510 @default.
- W2508559081 cites W2122455121 @default.
- W2508559081 cites W2124676809 @default.
- W2508559081 cites W2127200588 @default.
- W2508559081 cites W2131397321 @default.
- W2508559081 cites W2134526812 @default.
- W2508559081 cites W2134812217 @default.
- W2508559081 cites W2148797745 @default.
- W2508559081 cites W2154184822 @default.
- W2508559081 cites W2154380613 @default.
- W2508559081 cites W2154431984 @default.
- W2508559081 cites W2168059506 @default.
- W2508559081 cites W2168137166 @default.
- W2508559081 cites W2179534488 @default.
- W2508559081 cites W2187950292 @default.
- W2508559081 cites W2253414912 @default.
- W2508559081 cites W4244971145 @default.
- W2508559081 cites W4294216491 @default.
- W2508559081 cites W2143948801 @default.
- W2508559081 doi "https://doi.org/10.1371/journal.pone.0161370" @default.
- W2508559081 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5015895" @default.
- W2508559081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27606429" @default.
- W2508559081 hasPublicationYear "2016" @default.
- W2508559081 type Work @default.
- W2508559081 sameAs 2508559081 @default.
- W2508559081 citedByCount "14" @default.
- W2508559081 countsByYear W25085590812017 @default.
- W2508559081 countsByYear W25085590812018 @default.
- W2508559081 countsByYear W25085590812019 @default.
- W2508559081 countsByYear W25085590812020 @default.
- W2508559081 countsByYear W25085590812021 @default.
- W2508559081 countsByYear W25085590812022 @default.
- W2508559081 crossrefType "journal-article" @default.
- W2508559081 hasAuthorship W2508559081A5002151282 @default.
- W2508559081 hasAuthorship W2508559081A5004430882 @default.
- W2508559081 hasAuthorship W2508559081A5005526520 @default.
- W2508559081 hasAuthorship W2508559081A5012630511 @default.
- W2508559081 hasAuthorship W2508559081A5022849737 @default.
- W2508559081 hasAuthorship W2508559081A5029524758 @default.
- W2508559081 hasAuthorship W2508559081A5029953642 @default.
- W2508559081 hasAuthorship W2508559081A5030062443 @default.
- W2508559081 hasAuthorship W2508559081A5033772480 @default.
- W2508559081 hasAuthorship W2508559081A5036656399 @default.
- W2508559081 hasAuthorship W2508559081A5049104921 @default.
- W2508559081 hasAuthorship W2508559081A5052209564 @default.
- W2508559081 hasAuthorship W2508559081A5057718357 @default.
- W2508559081 hasAuthorship W2508559081A5060267253 @default.
- W2508559081 hasAuthorship W2508559081A5070783794 @default.
- W2508559081 hasAuthorship W2508559081A5073090576 @default.