Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509223312> ?p ?o ?g. }
- W2509223312 endingPage "110" @default.
- W2509223312 startingPage "101" @default.
- W2509223312 abstract "In this paper, we focus on detecting a special type of anomaly in wireless sensor network (WSN), which appears simultaneously in a collection of neighboring nodes and lasts for a significant period of time. Existing point-based techniques, in this context, are not very effective and efficient. With the proposed distributed segment-based recursive kernel density estimation, a global probability density function can be tracked and its difference between every two periods of time is continuously measured for decision making. Kullback-Leibler (KL) divergence is employed as the measure and, in order to implement distributed in-network estimation at a lower communication cost, several types of approximated KL divergence are proposed. In the meantime, an entropic graph-based algorithm that operates in the manner of centralized computing is realized, in comparison with the proposed KL divergence-based algorithms. Finally, the algorithms are evaluated using a real-world data set, which demonstrates that they are able to achieve a comparable performance at a much lower communication cost." @default.
- W2509223312 created "2016-09-16" @default.
- W2509223312 creator A5015993565 @default.
- W2509223312 creator A5021904789 @default.
- W2509223312 creator A5043464306 @default.
- W2509223312 creator A5075234257 @default.
- W2509223312 date "2017-01-01" @default.
- W2509223312 modified "2023-09-26" @default.
- W2509223312 title "Distributed Segment-Based Anomaly Detection With Kullback–Leibler Divergence in Wireless Sensor Networks" @default.
- W2509223312 cites W1516111018 @default.
- W2509223312 cites W1965555277 @default.
- W2509223312 cites W1965928820 @default.
- W2509223312 cites W1968233163 @default.
- W2509223312 cites W2001150023 @default.
- W2509223312 cites W2023598561 @default.
- W2509223312 cites W2025262038 @default.
- W2509223312 cites W2036021116 @default.
- W2509223312 cites W204885769 @default.
- W2509223312 cites W2056563033 @default.
- W2509223312 cites W2058930359 @default.
- W2509223312 cites W2082384736 @default.
- W2509223312 cites W2091504096 @default.
- W2509223312 cites W2097965741 @default.
- W2509223312 cites W2099111195 @default.
- W2509223312 cites W2102981928 @default.
- W2509223312 cites W2114291548 @default.
- W2509223312 cites W2115506459 @default.
- W2509223312 cites W2117089038 @default.
- W2509223312 cites W2127543052 @default.
- W2509223312 cites W2130639236 @default.
- W2509223312 cites W2133515443 @default.
- W2509223312 cites W2137111949 @default.
- W2509223312 cites W2142100695 @default.
- W2509223312 cites W2142960677 @default.
- W2509223312 cites W2151764894 @default.
- W2509223312 cites W2152321560 @default.
- W2509223312 cites W2153819831 @default.
- W2509223312 cites W2158957441 @default.
- W2509223312 cites W2168452204 @default.
- W2509223312 cites W4242238821 @default.
- W2509223312 doi "https://doi.org/10.1109/tifs.2016.2603961" @default.
- W2509223312 hasPublicationYear "2017" @default.
- W2509223312 type Work @default.
- W2509223312 sameAs 2509223312 @default.
- W2509223312 citedByCount "49" @default.
- W2509223312 countsByYear W25092233122018 @default.
- W2509223312 countsByYear W25092233122019 @default.
- W2509223312 countsByYear W25092233122020 @default.
- W2509223312 countsByYear W25092233122021 @default.
- W2509223312 countsByYear W25092233122022 @default.
- W2509223312 countsByYear W25092233122023 @default.
- W2509223312 crossrefType "journal-article" @default.
- W2509223312 hasAuthorship W2509223312A5015993565 @default.
- W2509223312 hasAuthorship W2509223312A5021904789 @default.
- W2509223312 hasAuthorship W2509223312A5043464306 @default.
- W2509223312 hasAuthorship W2509223312A5075234257 @default.
- W2509223312 hasConcept C105795698 @default.
- W2509223312 hasConcept C11413529 @default.
- W2509223312 hasConcept C114614502 @default.
- W2509223312 hasConcept C124101348 @default.
- W2509223312 hasConcept C138885662 @default.
- W2509223312 hasConcept C151730666 @default.
- W2509223312 hasConcept C154945302 @default.
- W2509223312 hasConcept C171752962 @default.
- W2509223312 hasConcept C185429906 @default.
- W2509223312 hasConcept C197055811 @default.
- W2509223312 hasConcept C207390915 @default.
- W2509223312 hasConcept C24590314 @default.
- W2509223312 hasConcept C2779343474 @default.
- W2509223312 hasConcept C31258907 @default.
- W2509223312 hasConcept C33923547 @default.
- W2509223312 hasConcept C41008148 @default.
- W2509223312 hasConcept C41895202 @default.
- W2509223312 hasConcept C71134354 @default.
- W2509223312 hasConcept C739882 @default.
- W2509223312 hasConcept C74193536 @default.
- W2509223312 hasConcept C86803240 @default.
- W2509223312 hasConceptScore W2509223312C105795698 @default.
- W2509223312 hasConceptScore W2509223312C11413529 @default.
- W2509223312 hasConceptScore W2509223312C114614502 @default.
- W2509223312 hasConceptScore W2509223312C124101348 @default.
- W2509223312 hasConceptScore W2509223312C138885662 @default.
- W2509223312 hasConceptScore W2509223312C151730666 @default.
- W2509223312 hasConceptScore W2509223312C154945302 @default.
- W2509223312 hasConceptScore W2509223312C171752962 @default.
- W2509223312 hasConceptScore W2509223312C185429906 @default.
- W2509223312 hasConceptScore W2509223312C197055811 @default.
- W2509223312 hasConceptScore W2509223312C207390915 @default.
- W2509223312 hasConceptScore W2509223312C24590314 @default.
- W2509223312 hasConceptScore W2509223312C2779343474 @default.
- W2509223312 hasConceptScore W2509223312C31258907 @default.
- W2509223312 hasConceptScore W2509223312C33923547 @default.
- W2509223312 hasConceptScore W2509223312C41008148 @default.
- W2509223312 hasConceptScore W2509223312C41895202 @default.
- W2509223312 hasConceptScore W2509223312C71134354 @default.
- W2509223312 hasConceptScore W2509223312C739882 @default.
- W2509223312 hasConceptScore W2509223312C74193536 @default.
- W2509223312 hasConceptScore W2509223312C86803240 @default.