Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509631742> ?p ?o ?g. }
- W2509631742 abstract "Information on soils such as nutrient availability is essential for sustainable mountain ecosystem management. Heterogeneous soil nutrients might determine growth, distribution, and diversity of plants. Therefore, spatial patterns of soil nutrients should be investigated in mountainous areas. Digital soil mapping (soil landscape modelling) was used for important chemical soil parameters in the Soyang lake watershed, South Korea. Specific purposes are: (1) to develop maps of soil nutrients for ecological land potential assessment, (2) to investigate spatial patterns of various phosphorus (P) fractions, and (3) to predict nitrogen (N) to P ratios in the topsoil layer. Firstly, vegetation indices had the highest predictive power for soil nutrients. Using selected instead of all predictors via recursive feature elimination (RFE) improved prediction results considerably. Random forest (RF) showed the best performance compared to support vector regression (SVR) and generalized additive models (GAM). Cluster analysis identified four land potential classes: fertile, medium and unfertile with an additional class dominated by high phosphorus and low carbon and nitrogen contents due to human impact. This study provides an effective approach to map ecological land potentials for sustainable mountain ecosystem management.Secondly, surface curvature and elevation were important predictors for all P fractions. The concentrations of all P fractions changed with surface curvature and elevation. Higher values of most P fractions were found at the lower slope due to soil erosion. Especially, organic P was enriched at the lower slope, while the relative portion of residual P fractions was largest at the upper slope. Finally, surface curvature was selected as an important predictor for P contents in organic and mineral A horizons. LiDAR derived vegetation predictors and normalized difference vegetation index (NDVI) strongly contributed to model N in the organic layer. N to P ratios in the organic and mineral A horizons showed higher values at convex upper slopes and increased with surface curvature. This implies that spatial patterns of P and N in a mountainous catchment with steep slopes under monsoon conditions are mainly controlled by topography.In this thesis, various methods (e.g. predictor selection and importance, uncertainty assessment, and LiDAR analysis) were applied to digital soil mapping. Important environmental predictors and processes related to spatial patterns of soil nutrients were investigated. Based on our results, it is possible to better understand soil nutrient dynamics in landscapes and identify sensitive areas under environmental changes (e.g. areas with high nitrogen deposition).%%%%Informationen uber Boden, insbesondere deren Nahrstoffverfugbarkeit, sin notwendig fur ein nachhaltiges Management von Gebirgslandschaften. Die raumliche Verteilung der Bodennahrstoffe hat hierbei oft einen grosen Einfluss auf Wachstum, Verteilung und Diversitat der Pflanzen. Der Erfassung der Raummuster von…" @default.
- W2509631742 created "2016-09-16" @default.
- W2509631742 creator A5028686687 @default.
- W2509631742 date "2016-01-01" @default.
- W2509631742 modified "2023-09-28" @default.
- W2509631742 title "Digital Soil Mapping for Functional Analysis of Site Characteristics in Complex Terrain" @default.
- W2509631742 cites W18678914 @default.
- W2509631742 cites W1964172124 @default.
- W2509631742 cites W1974448175 @default.
- W2509631742 cites W1975014118 @default.
- W2509631742 cites W1982837210 @default.
- W2509631742 cites W1985477381 @default.
- W2509631742 cites W1989177893 @default.
- W2509631742 cites W1993229367 @default.
- W2509631742 cites W1993579752 @default.
- W2509631742 cites W2002333071 @default.
- W2509631742 cites W2003638001 @default.
- W2509631742 cites W2009990230 @default.
- W2509631742 cites W2023134953 @default.
- W2509631742 cites W2041383474 @default.
- W2509631742 cites W2049045199 @default.
- W2509631742 cites W2053002218 @default.
- W2509631742 cites W2054325787 @default.
- W2509631742 cites W2059445175 @default.
- W2509631742 cites W2070230130 @default.
- W2509631742 cites W2081027696 @default.
- W2509631742 cites W2081340599 @default.
- W2509631742 cites W2089097786 @default.
- W2509631742 cites W2089217861 @default.
- W2509631742 cites W2097337758 @default.
- W2509631742 cites W2101900756 @default.
- W2509631742 cites W2116395914 @default.
- W2509631742 cites W2129961764 @default.
- W2509631742 cites W2133160971 @default.
- W2509631742 cites W2137229504 @default.
- W2509631742 cites W2137490014 @default.
- W2509631742 cites W2141720560 @default.
- W2509631742 cites W2153944160 @default.
- W2509631742 cites W2223238159 @default.
- W2509631742 cites W2286029403 @default.
- W2509631742 cites W429766147 @default.
- W2509631742 cites W590978804 @default.
- W2509631742 cites W602008857 @default.
- W2509631742 hasPublicationYear "2016" @default.
- W2509631742 type Work @default.
- W2509631742 sameAs 2509631742 @default.
- W2509631742 citedByCount "0" @default.
- W2509631742 crossrefType "dissertation" @default.
- W2509631742 hasAuthorship W2509631742A5028686687 @default.
- W2509631742 hasConcept C110872660 @default.
- W2509631742 hasConcept C127313418 @default.
- W2509631742 hasConcept C142724271 @default.
- W2509631742 hasConcept C142796444 @default.
- W2509631742 hasConcept C159390177 @default.
- W2509631742 hasConcept C159750122 @default.
- W2509631742 hasConcept C178790620 @default.
- W2509631742 hasConcept C185592680 @default.
- W2509631742 hasConcept C187320778 @default.
- W2509631742 hasConcept C18903297 @default.
- W2509631742 hasConcept C20529654 @default.
- W2509631742 hasConcept C2776133958 @default.
- W2509631742 hasConcept C39432304 @default.
- W2509631742 hasConcept C510538283 @default.
- W2509631742 hasConcept C71924100 @default.
- W2509631742 hasConcept C76886044 @default.
- W2509631742 hasConcept C86803240 @default.
- W2509631742 hasConceptScore W2509631742C110872660 @default.
- W2509631742 hasConceptScore W2509631742C127313418 @default.
- W2509631742 hasConceptScore W2509631742C142724271 @default.
- W2509631742 hasConceptScore W2509631742C142796444 @default.
- W2509631742 hasConceptScore W2509631742C159390177 @default.
- W2509631742 hasConceptScore W2509631742C159750122 @default.
- W2509631742 hasConceptScore W2509631742C178790620 @default.
- W2509631742 hasConceptScore W2509631742C185592680 @default.
- W2509631742 hasConceptScore W2509631742C187320778 @default.
- W2509631742 hasConceptScore W2509631742C18903297 @default.
- W2509631742 hasConceptScore W2509631742C20529654 @default.
- W2509631742 hasConceptScore W2509631742C2776133958 @default.
- W2509631742 hasConceptScore W2509631742C39432304 @default.
- W2509631742 hasConceptScore W2509631742C510538283 @default.
- W2509631742 hasConceptScore W2509631742C71924100 @default.
- W2509631742 hasConceptScore W2509631742C76886044 @default.
- W2509631742 hasConceptScore W2509631742C86803240 @default.
- W2509631742 hasLocation W25096317421 @default.
- W2509631742 hasOpenAccess W2509631742 @default.
- W2509631742 hasPrimaryLocation W25096317421 @default.
- W2509631742 hasRelatedWork W2325775800 @default.
- W2509631742 hasRelatedWork W2331888038 @default.
- W2509631742 hasRelatedWork W2356134148 @default.
- W2509631742 hasRelatedWork W2357998037 @default.
- W2509631742 hasRelatedWork W2359246110 @default.
- W2509631742 hasRelatedWork W2363467455 @default.
- W2509631742 hasRelatedWork W2365439265 @default.
- W2509631742 hasRelatedWork W2381511699 @default.
- W2509631742 hasRelatedWork W2383527157 @default.
- W2509631742 hasRelatedWork W2383725963 @default.
- W2509631742 hasRelatedWork W2735450316 @default.
- W2509631742 hasRelatedWork W2747333575 @default.
- W2509631742 hasRelatedWork W2913777061 @default.
- W2509631742 hasRelatedWork W2971166000 @default.