Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509809591> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2509809591 endingPage "1930" @default.
- W2509809591 startingPage "1917" @default.
- W2509809591 abstract "This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the output torque, brake power, brake specific fuel consumption andexhaust gas temperature. The input data for network training was gathered from engine laboratory testing running at various engine speeds and loads. An ANN prediction model was developed based on a standard back-propagation Levenberg–Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data and output from the mathematical model. The results showed that the ANN model provided good agreement with the experimental data with a coefficient of determination (R2) of 0.99. The prediction error of the ANN model is lower than the mathematical model. The present study reveals that the artificial neural network approach can be used to predict the performance of a marine diesel engine with high accuracy" @default.
- W2509809591 created "2016-09-16" @default.
- W2509809591 creator A5046305831 @default.
- W2509809591 creator A5056273225 @default.
- W2509809591 creator A5081179135 @default.
- W2509809591 creator A5082358143 @default.
- W2509809591 creator A5084896615 @default.
- W2509809591 creator A5086985779 @default.
- W2509809591 date "2016-06-30" @default.
- W2509809591 modified "2023-10-16" @default.
- W2509809591 title "Prediction of marine diesel engine performance by using artificial neural network model" @default.
- W2509809591 cites W118316264 @default.
- W2509809591 cites W1487043419 @default.
- W2509809591 cites W1549869837 @default.
- W2509809591 cites W1589000530 @default.
- W2509809591 cites W1917046417 @default.
- W2509809591 cites W1969549217 @default.
- W2509809591 cites W1977423968 @default.
- W2509809591 cites W1981123731 @default.
- W2509809591 cites W1981240940 @default.
- W2509809591 cites W1987323548 @default.
- W2509809591 cites W1988783778 @default.
- W2509809591 cites W1990196040 @default.
- W2509809591 cites W1992674248 @default.
- W2509809591 cites W1996122683 @default.
- W2509809591 cites W1996739689 @default.
- W2509809591 cites W2001270798 @default.
- W2509809591 cites W2025133626 @default.
- W2509809591 cites W2026083729 @default.
- W2509809591 cites W2051264098 @default.
- W2509809591 cites W2072629689 @default.
- W2509809591 cites W2072883830 @default.
- W2509809591 cites W2098189192 @default.
- W2509809591 cites W2155462680 @default.
- W2509809591 cites W2231526142 @default.
- W2509809591 cites W2319424058 @default.
- W2509809591 cites W2570286615 @default.
- W2509809591 cites W2614948513 @default.
- W2509809591 cites W2742037293 @default.
- W2509809591 cites W615494351 @default.
- W2509809591 doi "https://doi.org/10.15282/jmes.10.1.2016.15.0183" @default.
- W2509809591 hasPublicationYear "2016" @default.
- W2509809591 type Work @default.
- W2509809591 sameAs 2509809591 @default.
- W2509809591 citedByCount "29" @default.
- W2509809591 countsByYear W25098095912017 @default.
- W2509809591 countsByYear W25098095912018 @default.
- W2509809591 countsByYear W25098095912019 @default.
- W2509809591 countsByYear W25098095912020 @default.
- W2509809591 countsByYear W25098095912021 @default.
- W2509809591 countsByYear W25098095912022 @default.
- W2509809591 countsByYear W25098095912023 @default.
- W2509809591 crossrefType "journal-article" @default.
- W2509809591 hasAuthorship W2509809591A5046305831 @default.
- W2509809591 hasAuthorship W2509809591A5056273225 @default.
- W2509809591 hasAuthorship W2509809591A5081179135 @default.
- W2509809591 hasAuthorship W2509809591A5082358143 @default.
- W2509809591 hasAuthorship W2509809591A5084896615 @default.
- W2509809591 hasAuthorship W2509809591A5086985779 @default.
- W2509809591 hasBestOaLocation W25098095911 @default.
- W2509809591 hasConcept C127413603 @default.
- W2509809591 hasConcept C154945302 @default.
- W2509809591 hasConcept C171146098 @default.
- W2509809591 hasConcept C199104240 @default.
- W2509809591 hasConcept C2780804531 @default.
- W2509809591 hasConcept C41008148 @default.
- W2509809591 hasConcept C50644808 @default.
- W2509809591 hasConceptScore W2509809591C127413603 @default.
- W2509809591 hasConceptScore W2509809591C154945302 @default.
- W2509809591 hasConceptScore W2509809591C171146098 @default.
- W2509809591 hasConceptScore W2509809591C199104240 @default.
- W2509809591 hasConceptScore W2509809591C2780804531 @default.
- W2509809591 hasConceptScore W2509809591C41008148 @default.
- W2509809591 hasConceptScore W2509809591C50644808 @default.
- W2509809591 hasIssue "1" @default.
- W2509809591 hasLocation W25098095911 @default.
- W2509809591 hasOpenAccess W2509809591 @default.
- W2509809591 hasPrimaryLocation W25098095911 @default.
- W2509809591 hasRelatedWork W2349065234 @default.
- W2509809591 hasRelatedWork W2355520973 @default.
- W2509809591 hasRelatedWork W2356049933 @default.
- W2509809591 hasRelatedWork W2362311197 @default.
- W2509809591 hasRelatedWork W2364364870 @default.
- W2509809591 hasRelatedWork W2367758107 @default.
- W2509809591 hasRelatedWork W2370469177 @default.
- W2509809591 hasRelatedWork W2372682929 @default.
- W2509809591 hasRelatedWork W2382174018 @default.
- W2509809591 hasRelatedWork W2385829839 @default.
- W2509809591 hasVolume "10" @default.
- W2509809591 isParatext "false" @default.
- W2509809591 isRetracted "false" @default.
- W2509809591 magId "2509809591" @default.
- W2509809591 workType "article" @default.