Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509883035> ?p ?o ?g. }
- W2509883035 endingPage "335" @default.
- W2509883035 startingPage "303" @default.
- W2509883035 abstract "In this paper we examine the use of crowdsourcing as a means to detect Linked Data quality problems that are difficult to uncover automatically. We base our approach on the analysis of the most common errors encountered in the DBpedia dataset, and a classification of these errors according to the e xtent to which they are likely to be amenable to crowdsourcing. We then propose and study different crowdsourcing approaches to identify these Linked Data quality issues, employing DBpedia as our use case: (i) a contest targeting the Linked Data expert community, and (ii) paid microtasks published on Amazon Mechanical Turk. We secondly focus on adapting the Find-Fix-Verify crowdsourcing pattern to exploit the strengths of experts and lay workers. By testing two distinct Find-Verify workflows (lay users only and experts verified by lay users) we reveal how to best combine different crowds’ complementary aptitudes in Linked Data quality issue detection. Empirical results show that a combination of the two styles of crowdsourcing is likely to achieve more effective results than each of them used in isolation, and that human computation is a promising and affordable way to enhance the quality of DBpedia." @default.
- W2509883035 created "2016-09-16" @default.
- W2509883035 creator A5046030036 @default.
- W2509883035 creator A5053300261 @default.
- W2509883035 creator A5058284930 @default.
- W2509883035 creator A5067133778 @default.
- W2509883035 creator A5070186420 @default.
- W2509883035 creator A5091892854 @default.
- W2509883035 date "2018-04-12" @default.
- W2509883035 modified "2023-10-18" @default.
- W2509883035 title "Detecting Linked Data quality issues via crowdsourcing: A DBpedia study" @default.
- W2509883035 cites W105147515 @default.
- W2509883035 cites W122957096 @default.
- W2509883035 cites W1472284018 @default.
- W2509883035 cites W1496949948 @default.
- W2509883035 cites W1525158937 @default.
- W2509883035 cites W1545175209 @default.
- W2509883035 cites W1552847225 @default.
- W2509883035 cites W1697531004 @default.
- W2509883035 cites W1870959433 @default.
- W2509883035 cites W1876766592 @default.
- W2509883035 cites W1913451680 @default.
- W2509883035 cites W1916072780 @default.
- W2509883035 cites W1966119171 @default.
- W2509883035 cites W1973653891 @default.
- W2509883035 cites W1975879668 @default.
- W2509883035 cites W1976823128 @default.
- W2509883035 cites W1977609394 @default.
- W2509883035 cites W1979632153 @default.
- W2509883035 cites W1990290146 @default.
- W2509883035 cites W1999348851 @default.
- W2509883035 cites W2005835389 @default.
- W2509883035 cites W202389787 @default.
- W2509883035 cites W2028755983 @default.
- W2509883035 cites W2053154970 @default.
- W2509883035 cites W2055515830 @default.
- W2509883035 cites W2056141229 @default.
- W2509883035 cites W2056748234 @default.
- W2509883035 cites W2068275675 @default.
- W2509883035 cites W2072692971 @default.
- W2509883035 cites W2076618134 @default.
- W2509883035 cites W2086929223 @default.
- W2509883035 cites W2090634677 @default.
- W2509883035 cites W2108223890 @default.
- W2509883035 cites W2112177229 @default.
- W2509883035 cites W2113878109 @default.
- W2509883035 cites W2127008633 @default.
- W2509883035 cites W2136606893 @default.
- W2509883035 cites W2153225416 @default.
- W2509883035 cites W2153526112 @default.
- W2509883035 cites W2156677278 @default.
- W2509883035 cites W2157256185 @default.
- W2509883035 cites W2252446605 @default.
- W2509883035 cites W31535402 @default.
- W2509883035 cites W4210962885 @default.
- W2509883035 cites W4211115691 @default.
- W2509883035 cites W58338405 @default.
- W2509883035 cites W67122473 @default.
- W2509883035 cites W753514339 @default.
- W2509883035 doi "https://doi.org/10.3233/sw-160239" @default.
- W2509883035 hasPublicationYear "2018" @default.
- W2509883035 type Work @default.
- W2509883035 sameAs 2509883035 @default.
- W2509883035 citedByCount "19" @default.
- W2509883035 countsByYear W25098830352017 @default.
- W2509883035 countsByYear W25098830352018 @default.
- W2509883035 countsByYear W25098830352019 @default.
- W2509883035 countsByYear W25098830352020 @default.
- W2509883035 countsByYear W25098830352021 @default.
- W2509883035 countsByYear W25098830352022 @default.
- W2509883035 countsByYear W25098830352023 @default.
- W2509883035 crossrefType "journal-article" @default.
- W2509883035 hasAuthorship W2509883035A5046030036 @default.
- W2509883035 hasAuthorship W2509883035A5053300261 @default.
- W2509883035 hasAuthorship W2509883035A5058284930 @default.
- W2509883035 hasAuthorship W2509883035A5067133778 @default.
- W2509883035 hasAuthorship W2509883035A5070186420 @default.
- W2509883035 hasAuthorship W2509883035A5091892854 @default.
- W2509883035 hasConcept C111472728 @default.
- W2509883035 hasConcept C124101348 @default.
- W2509883035 hasConcept C136264566 @default.
- W2509883035 hasConcept C136764020 @default.
- W2509883035 hasConcept C138885662 @default.
- W2509883035 hasConcept C162324750 @default.
- W2509883035 hasConcept C165696696 @default.
- W2509883035 hasConcept C177212765 @default.
- W2509883035 hasConcept C17744445 @default.
- W2509883035 hasConcept C199539241 @default.
- W2509883035 hasConcept C2129575 @default.
- W2509883035 hasConcept C23123220 @default.
- W2509883035 hasConcept C24756922 @default.
- W2509883035 hasConcept C2522767166 @default.
- W2509883035 hasConcept C2777582232 @default.
- W2509883035 hasConcept C2777852691 @default.
- W2509883035 hasConcept C2779530757 @default.
- W2509883035 hasConcept C2780378061 @default.
- W2509883035 hasConcept C38652104 @default.
- W2509883035 hasConcept C41008148 @default.