Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509890384> ?p ?o ?g. }
- W2509890384 endingPage "e0161556" @default.
- W2509890384 startingPage "e0161556" @default.
- W2509890384 abstract "Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches." @default.
- W2509890384 created "2016-09-16" @default.
- W2509890384 creator A5030966569 @default.
- W2509890384 creator A5057728371 @default.
- W2509890384 creator A5065532751 @default.
- W2509890384 date "2016-08-26" @default.
- W2509890384 modified "2023-10-16" @default.
- W2509890384 title "Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification" @default.
- W2509890384 cites W1566135517 @default.
- W2509890384 cites W160612963 @default.
- W2509890384 cites W1823656996 @default.
- W2509890384 cites W1976861102 @default.
- W2509890384 cites W1979745977 @default.
- W2509890384 cites W1982761740 @default.
- W2509890384 cites W1986139367 @default.
- W2509890384 cites W1996151979 @default.
- W2509890384 cites W2023690667 @default.
- W2509890384 cites W2030853058 @default.
- W2509890384 cites W2060749088 @default.
- W2509890384 cites W2061276338 @default.
- W2509890384 cites W2064768066 @default.
- W2509890384 cites W2078631766 @default.
- W2509890384 cites W2083158334 @default.
- W2509890384 cites W2084318809 @default.
- W2509890384 cites W2089615939 @default.
- W2509890384 cites W2089969656 @default.
- W2509890384 cites W2092300159 @default.
- W2509890384 cites W2096945460 @default.
- W2509890384 cites W2104167780 @default.
- W2509890384 cites W2107871626 @default.
- W2509890384 cites W2113511941 @default.
- W2509890384 cites W2115664739 @default.
- W2509890384 cites W2134845472 @default.
- W2509890384 cites W2137936662 @default.
- W2509890384 cites W2141957843 @default.
- W2509890384 cites W2142054519 @default.
- W2509890384 cites W2142866653 @default.
- W2509890384 cites W2144737531 @default.
- W2509890384 cites W2149430368 @default.
- W2509890384 cites W2157840858 @default.
- W2509890384 cites W2161342819 @default.
- W2509890384 cites W2166487087 @default.
- W2509890384 cites W2168356304 @default.
- W2509890384 cites W4247307225 @default.
- W2509890384 doi "https://doi.org/10.1371/journal.pone.0161556" @default.
- W2509890384 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5001638" @default.
- W2509890384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27564376" @default.
- W2509890384 hasPublicationYear "2016" @default.
- W2509890384 type Work @default.
- W2509890384 sameAs 2509890384 @default.
- W2509890384 citedByCount "36" @default.
- W2509890384 countsByYear W25098903842017 @default.
- W2509890384 countsByYear W25098903842018 @default.
- W2509890384 countsByYear W25098903842019 @default.
- W2509890384 countsByYear W25098903842020 @default.
- W2509890384 countsByYear W25098903842021 @default.
- W2509890384 countsByYear W25098903842022 @default.
- W2509890384 countsByYear W25098903842023 @default.
- W2509890384 crossrefType "journal-article" @default.
- W2509890384 hasAuthorship W2509890384A5030966569 @default.
- W2509890384 hasAuthorship W2509890384A5057728371 @default.
- W2509890384 hasAuthorship W2509890384A5065532751 @default.
- W2509890384 hasBestOaLocation W25098903841 @default.
- W2509890384 hasConcept C115961682 @default.
- W2509890384 hasConcept C118487528 @default.
- W2509890384 hasConcept C12267149 @default.
- W2509890384 hasConcept C134018914 @default.
- W2509890384 hasConcept C153180895 @default.
- W2509890384 hasConcept C154945302 @default.
- W2509890384 hasConcept C2776391266 @default.
- W2509890384 hasConcept C2779829184 @default.
- W2509890384 hasConcept C31972630 @default.
- W2509890384 hasConcept C41008148 @default.
- W2509890384 hasConcept C555293320 @default.
- W2509890384 hasConcept C64869954 @default.
- W2509890384 hasConcept C71924100 @default.
- W2509890384 hasConcept C75294576 @default.
- W2509890384 hasConcept C95623464 @default.
- W2509890384 hasConceptScore W2509890384C115961682 @default.
- W2509890384 hasConceptScore W2509890384C118487528 @default.
- W2509890384 hasConceptScore W2509890384C12267149 @default.
- W2509890384 hasConceptScore W2509890384C134018914 @default.
- W2509890384 hasConceptScore W2509890384C153180895 @default.
- W2509890384 hasConceptScore W2509890384C154945302 @default.
- W2509890384 hasConceptScore W2509890384C2776391266 @default.
- W2509890384 hasConceptScore W2509890384C2779829184 @default.
- W2509890384 hasConceptScore W2509890384C31972630 @default.
- W2509890384 hasConceptScore W2509890384C41008148 @default.
- W2509890384 hasConceptScore W2509890384C555293320 @default.
- W2509890384 hasConceptScore W2509890384C64869954 @default.
- W2509890384 hasConceptScore W2509890384C71924100 @default.
- W2509890384 hasConceptScore W2509890384C75294576 @default.
- W2509890384 hasConceptScore W2509890384C95623464 @default.
- W2509890384 hasFunder F4320321001 @default.
- W2509890384 hasIssue "8" @default.
- W2509890384 hasLocation W25098903841 @default.
- W2509890384 hasLocation W25098903842 @default.
- W2509890384 hasLocation W25098903843 @default.