Matches in SemOpenAlex for { <https://semopenalex.org/work/W2509943920> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2509943920 abstract "Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley's K and applied to the problem of clustering with deliberate self-harm (DSH), is presented.Point-based Monte-Carlo simulation of Ripley's K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years' emergency hospital presentations (n = 136) in a New Zealand town (population ~50,000). Study area was defined by residential (housing) land parcels representing a finite set of possible point addresses.Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort.Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley's K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for covariate measures that exhibit spatial clustering, such as deprivation, are crucial when assessing point-based clustering." @default.
- W2509943920 created "2016-09-16" @default.
- W2509943920 creator A5022110262 @default.
- W2509943920 creator A5028504080 @default.
- W2509943920 creator A5049559650 @default.
- W2509943920 creator A5079455145 @default.
- W2509943920 date "2016-09-01" @default.
- W2509943920 modified "2023-10-09" @default.
- W2509943920 title "Managing distance and covariate information with point-based clustering" @default.
- W2509943920 cites W1600657071 @default.
- W2509943920 cites W1978293581 @default.
- W2509943920 cites W2008911215 @default.
- W2509943920 cites W2013256252 @default.
- W2509943920 cites W2015664792 @default.
- W2509943920 cites W2026345425 @default.
- W2509943920 cites W204885769 @default.
- W2509943920 cites W2063751881 @default.
- W2509943920 cites W2064158755 @default.
- W2509943920 cites W2111616256 @default.
- W2509943920 cites W2112036122 @default.
- W2509943920 cites W2115846711 @default.
- W2509943920 cites W2116700827 @default.
- W2509943920 cites W2118898434 @default.
- W2509943920 cites W2152905391 @default.
- W2509943920 cites W2187717658 @default.
- W2509943920 cites W4243913146 @default.
- W2509943920 doi "https://doi.org/10.1186/s12874-016-0218-z" @default.
- W2509943920 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5009712" @default.
- W2509943920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27586862" @default.
- W2509943920 hasPublicationYear "2016" @default.
- W2509943920 type Work @default.
- W2509943920 sameAs 2509943920 @default.
- W2509943920 citedByCount "1" @default.
- W2509943920 countsByYear W25099439202021 @default.
- W2509943920 crossrefType "journal-article" @default.
- W2509943920 hasAuthorship W2509943920A5022110262 @default.
- W2509943920 hasAuthorship W2509943920A5028504080 @default.
- W2509943920 hasAuthorship W2509943920A5049559650 @default.
- W2509943920 hasAuthorship W2509943920A5079455145 @default.
- W2509943920 hasBestOaLocation W25099439201 @default.
- W2509943920 hasConcept C105795698 @default.
- W2509943920 hasConcept C119043178 @default.
- W2509943920 hasConcept C124101348 @default.
- W2509943920 hasConcept C144024400 @default.
- W2509943920 hasConcept C149782125 @default.
- W2509943920 hasConcept C149923435 @default.
- W2509943920 hasConcept C166957645 @default.
- W2509943920 hasConcept C205649164 @default.
- W2509943920 hasConcept C2779343474 @default.
- W2509943920 hasConcept C2908647359 @default.
- W2509943920 hasConcept C33923547 @default.
- W2509943920 hasConcept C41008148 @default.
- W2509943920 hasConcept C73555534 @default.
- W2509943920 hasConceptScore W2509943920C105795698 @default.
- W2509943920 hasConceptScore W2509943920C119043178 @default.
- W2509943920 hasConceptScore W2509943920C124101348 @default.
- W2509943920 hasConceptScore W2509943920C144024400 @default.
- W2509943920 hasConceptScore W2509943920C149782125 @default.
- W2509943920 hasConceptScore W2509943920C149923435 @default.
- W2509943920 hasConceptScore W2509943920C166957645 @default.
- W2509943920 hasConceptScore W2509943920C205649164 @default.
- W2509943920 hasConceptScore W2509943920C2779343474 @default.
- W2509943920 hasConceptScore W2509943920C2908647359 @default.
- W2509943920 hasConceptScore W2509943920C33923547 @default.
- W2509943920 hasConceptScore W2509943920C41008148 @default.
- W2509943920 hasConceptScore W2509943920C73555534 @default.
- W2509943920 hasLocation W25099439201 @default.
- W2509943920 hasLocation W25099439202 @default.
- W2509943920 hasLocation W25099439203 @default.
- W2509943920 hasLocation W25099439204 @default.
- W2509943920 hasLocation W25099439205 @default.
- W2509943920 hasOpenAccess W2509943920 @default.
- W2509943920 hasPrimaryLocation W25099439201 @default.
- W2509943920 hasRelatedWork W1921984618 @default.
- W2509943920 hasRelatedWork W1995702471 @default.
- W2509943920 hasRelatedWork W2004538666 @default.
- W2509943920 hasRelatedWork W2005645662 @default.
- W2509943920 hasRelatedWork W2030330443 @default.
- W2509943920 hasRelatedWork W2047647986 @default.
- W2509943920 hasRelatedWork W2053538370 @default.
- W2509943920 hasRelatedWork W2083940143 @default.
- W2509943920 hasRelatedWork W2103316868 @default.
- W2509943920 hasRelatedWork W2162787520 @default.
- W2509943920 hasRelatedWork W2241250073 @default.
- W2509943920 hasRelatedWork W2287172963 @default.
- W2509943920 hasRelatedWork W2428215932 @default.
- W2509943920 hasRelatedWork W2775124882 @default.
- W2509943920 hasRelatedWork W2899779609 @default.
- W2509943920 hasRelatedWork W3080257843 @default.
- W2509943920 hasRelatedWork W3116592930 @default.
- W2509943920 hasRelatedWork W3187170612 @default.
- W2509943920 hasRelatedWork W594503987 @default.
- W2509943920 hasRelatedWork W77540285 @default.
- W2509943920 isParatext "false" @default.
- W2509943920 isRetracted "false" @default.
- W2509943920 magId "2509943920" @default.
- W2509943920 workType "article" @default.