Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510104197> ?p ?o ?g. }
- W2510104197 endingPage "276" @default.
- W2510104197 startingPage "259" @default.
- W2510104197 abstract "Increasing evidence suggests the presence of recent liquid water, including brines, on Mars. Brines have therefore likely impacted clay minerals such as the Fe-rich mineral nontronite found in martian ancient terrains. To interpret these interactions, we conducted batch experiments to measure the apparent dissolution rate constant of nontronite at 25.0 °C at activities of water (aH2O) of 1.00 (0.01 M CaCl2 or NaCl), 0.75 (saturated NaCl or 3.00 mol kg−1 CaCl2), and 0.50 (5.00 mol kg−1 CaCl2). Experiments at aH2O = 1.00 (0.01 M CaCl2) were also conducted at 4.0 °C, 25.0 °C, and 45.0 °C to measure an apparent activation energy for the dissolution of nontronite. Apparent dissolution rate constants at 25.0 °C in CaCl2-containing solutions decrease with decreasing activity of water as follows: 1.18 × 10−12 ± 9 × 10−14 mol mineral m−2 s−1 (aH2O = 1.00) > 2.36 × 10−13 ± 3.1 × 10−14 mol mineral m−2 s−1 (aH2O = 0.75) > 2.05 × 10−14 ± 2.9 × 10−15 mol mineral m−2 s−1 (aH2O = 0.50). Similar results were observed at 25.0 °C in NaCl-containing solutions: 1.89 × 10−12 ± 1 × 10−13 mol mineral m−2 s−1 (aH2O = 1.00) > 1.98 × 10−13 ± 2.3 × 10−14 mol mineral m−2 s−1 (aH2O = 0.75). This decrease in apparent dissolution rate constants with decreasing activity of water follows a relationship of the form: log kdiss = 3.70 ± 0.20 × aH2O − 15.49, where kdiss is the apparent dissolution rate constant, and aH2O is the activity of water. The slope of this relationship (3.70 ± 0.20) is within uncertainty of that of other minerals where the relationship between dissolution rates and activity of water has been tested, including forsteritic olivine (log R = 3.27 ± 0.91 × aH2O − 11.00) (Olsen et al., 2015) and jarosite (log R = 3.85 ± 0.43 × aH2O − 12.84) (Dixon et al., 2015), where R is the mineral dissolution rate. This result allows prediction of mineral dissolution as a function of activity of water and suggests that with decreasing activity of water, mineral dissolution will decrease due to the role of water as a ligand in the reaction. Apparent dissolution rate constants in the dilute NaCl solution (1.89 × 10−12 ± 1 × 10−13 mol mineral m−2 s−1) are slightly greater than those in the dilute CaCl2 solutions (1.18 × 10−12 ± 9 × 10−14 mol mineral m−2 s−1). We attribute this effect to the exchange of Na with Ca in the nontronite interlayer. An apparent activation energy of 54.6 ± 1.0 kJ/mol was calculated from apparent dissolution rate constants in dilute CaCl2-containing solutions at temperatures of 4.0 °C, 25.0 °C, and 45.0 °C: 2.33 × 10−13 ± 1.3 × 10−14 mol mineral m−2 s−1 (4.0 °C), 1.18 × 10−12 ± 9 × 10−14 mol mineral m−2 s−1 (25.0 °C), and 4.98 × 10−12 ± 3.8 × 10−13 mol mineral m−2 s−1 (45.0 °C). The greatly decreased dissolution of nontronite in brines and at low temperatures suggests that any martian nontronite found to be perceptibly weathered may have experienced very long periods of water–rock interaction with brines at the low temperatures prevalent on Mars, with important implications for the paleoclimate and long-term potential habitability of Mars." @default.
- W2510104197 created "2016-09-16" @default.
- W2510104197 creator A5008292635 @default.
- W2510104197 creator A5016321500 @default.
- W2510104197 creator A5016741197 @default.
- W2510104197 creator A5021455837 @default.
- W2510104197 creator A5035530162 @default.
- W2510104197 creator A5037198120 @default.
- W2510104197 creator A5044463950 @default.
- W2510104197 creator A5052412386 @default.
- W2510104197 date "2016-12-01" @default.
- W2510104197 modified "2023-10-01" @default.
- W2510104197 title "Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars" @default.
- W2510104197 cites W1490735752 @default.
- W2510104197 cites W1527101551 @default.
- W2510104197 cites W1565008566 @default.
- W2510104197 cites W1596847809 @default.
- W2510104197 cites W1650535166 @default.
- W2510104197 cites W1965100080 @default.
- W2510104197 cites W1965163961 @default.
- W2510104197 cites W1970955787 @default.
- W2510104197 cites W1972665451 @default.
- W2510104197 cites W1972941971 @default.
- W2510104197 cites W1974156850 @default.
- W2510104197 cites W1975801642 @default.
- W2510104197 cites W1978489636 @default.
- W2510104197 cites W1979160364 @default.
- W2510104197 cites W1980658479 @default.
- W2510104197 cites W1982507317 @default.
- W2510104197 cites W1984997397 @default.
- W2510104197 cites W1988403505 @default.
- W2510104197 cites W1989664729 @default.
- W2510104197 cites W2001102643 @default.
- W2510104197 cites W2004066065 @default.
- W2510104197 cites W2007877613 @default.
- W2510104197 cites W2008693706 @default.
- W2510104197 cites W2009593874 @default.
- W2510104197 cites W2009714939 @default.
- W2510104197 cites W2011254969 @default.
- W2510104197 cites W2011543988 @default.
- W2510104197 cites W2012696499 @default.
- W2510104197 cites W2012781861 @default.
- W2510104197 cites W2014549965 @default.
- W2510104197 cites W2019635088 @default.
- W2510104197 cites W2021371279 @default.
- W2510104197 cites W2024220619 @default.
- W2510104197 cites W2024550011 @default.
- W2510104197 cites W2025824363 @default.
- W2510104197 cites W2031797934 @default.
- W2510104197 cites W2032739155 @default.
- W2510104197 cites W2032863523 @default.
- W2510104197 cites W2035597208 @default.
- W2510104197 cites W2037899073 @default.
- W2510104197 cites W2040485378 @default.
- W2510104197 cites W2052404538 @default.
- W2510104197 cites W2054175190 @default.
- W2510104197 cites W2057697660 @default.
- W2510104197 cites W2062346731 @default.
- W2510104197 cites W2062440160 @default.
- W2510104197 cites W2070182138 @default.
- W2510104197 cites W2071814558 @default.
- W2510104197 cites W2074797789 @default.
- W2510104197 cites W2083412219 @default.
- W2510104197 cites W2086818495 @default.
- W2510104197 cites W2088222049 @default.
- W2510104197 cites W2088828290 @default.
- W2510104197 cites W2090713117 @default.
- W2510104197 cites W2092255863 @default.
- W2510104197 cites W2093662773 @default.
- W2510104197 cites W2095236437 @default.
- W2510104197 cites W2098940351 @default.
- W2510104197 cites W2100973511 @default.
- W2510104197 cites W2104525130 @default.
- W2510104197 cites W2106634720 @default.
- W2510104197 cites W2108201068 @default.
- W2510104197 cites W2109075239 @default.
- W2510104197 cites W2114331726 @default.
- W2510104197 cites W2121453627 @default.
- W2510104197 cites W2125610349 @default.
- W2510104197 cites W2129002420 @default.
- W2510104197 cites W2130232949 @default.
- W2510104197 cites W2130347844 @default.
- W2510104197 cites W2136811107 @default.
- W2510104197 cites W2146376665 @default.
- W2510104197 cites W2151055668 @default.
- W2510104197 cites W2152001765 @default.
- W2510104197 cites W2152693230 @default.
- W2510104197 cites W2155640471 @default.
- W2510104197 cites W2158914315 @default.
- W2510104197 cites W2169071665 @default.
- W2510104197 cites W2326809482 @default.
- W2510104197 cites W2328521826 @default.
- W2510104197 cites W2331131452 @default.
- W2510104197 cites W2331327611 @default.
- W2510104197 cites W3106263859 @default.
- W2510104197 doi "https://doi.org/10.1016/j.gca.2016.08.035" @default.
- W2510104197 hasPublicationYear "2016" @default.
- W2510104197 type Work @default.