Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510112988> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2510112988 abstract "A family $F$ of graphs on a fixed set of $n$ vertices is called triangle-intersecting if for any $G_1,G_2 in F$, the intersection $G_1 cap G_2$ contains a triangle. More generally, for a fixed graph $H$, a family $F$ is $H$-intersecting if the intersection of any two graphs in $F$ contains a sub-graph isomorphic to $H$. In [D. Ellis, Y. Filmus, and E. Friedgut, Triangle-intersecting families of graphs, J. Eur. Math. Soc. 14 (2012), pp. 841--885], Ellis, Filmus and Friedgut proved a 36-year old conjecture of Simonovits and S'{o}s stating that the maximal size of a triangle-intersecting family is $(1/8)2^{n(n-1)/2}$. Furthermore, they proved a $p$-biased generalization, stating that for any $p leq 1/2$, we have $mu_{p}(F)le p^{3}$, where $mu_{p}(F)$ is the probability that the random graph $G(n,p)$ belongs to $F$. In the same paper, Ellis et al. conjectured that the assertion of their biased theorem holds also for $1/2 < p le 3/4$, and more generally, that for any non-$t$-colorable graph $H$ and any $H$-intersecting family $F$, we have $mu_{p}(F)le p^{t(t+1)/2}$ for all $p leq (2t-1)/(2t)$. In this note we construct, for any fixed $H$ and any $p>1/2$, an $H$-intersecting family $F$ of graphs such that $mu_{p}(F)ge 1-e^{-n^{2}/C}$, where $C$ depends only on $H$ and $p$, thus disproving both conjectures." @default.
- W2510112988 created "2016-09-16" @default.
- W2510112988 creator A5040449963 @default.
- W2510112988 creator A5057132230 @default.
- W2510112988 date "2016-09-07" @default.
- W2510112988 modified "2023-09-23" @default.
- W2510112988 title "On Large H-Intersecting Families" @default.
- W2510112988 hasPublicationYear "2016" @default.
- W2510112988 type Work @default.
- W2510112988 sameAs 2510112988 @default.
- W2510112988 citedByCount "0" @default.
- W2510112988 crossrefType "posted-content" @default.
- W2510112988 hasAuthorship W2510112988A5040449963 @default.
- W2510112988 hasAuthorship W2510112988A5057132230 @default.
- W2510112988 hasConcept C114614502 @default.
- W2510112988 hasConcept C118615104 @default.
- W2510112988 hasConcept C132525143 @default.
- W2510112988 hasConcept C2780990831 @default.
- W2510112988 hasConcept C33923547 @default.
- W2510112988 hasConceptScore W2510112988C114614502 @default.
- W2510112988 hasConceptScore W2510112988C118615104 @default.
- W2510112988 hasConceptScore W2510112988C132525143 @default.
- W2510112988 hasConceptScore W2510112988C2780990831 @default.
- W2510112988 hasConceptScore W2510112988C33923547 @default.
- W2510112988 hasLocation W25101129881 @default.
- W2510112988 hasOpenAccess W2510112988 @default.
- W2510112988 hasPrimaryLocation W25101129881 @default.
- W2510112988 hasRelatedWork W1063412800 @default.
- W2510112988 hasRelatedWork W1545044270 @default.
- W2510112988 hasRelatedWork W1793772240 @default.
- W2510112988 hasRelatedWork W1966455700 @default.
- W2510112988 hasRelatedWork W1991267028 @default.
- W2510112988 hasRelatedWork W2043856632 @default.
- W2510112988 hasRelatedWork W2098242693 @default.
- W2510112988 hasRelatedWork W2248302044 @default.
- W2510112988 hasRelatedWork W2564313417 @default.
- W2510112988 hasRelatedWork W2896300682 @default.
- W2510112988 hasRelatedWork W2908089474 @default.
- W2510112988 hasRelatedWork W2914928947 @default.
- W2510112988 hasRelatedWork W2950459627 @default.
- W2510112988 hasRelatedWork W2963283234 @default.
- W2510112988 hasRelatedWork W2963665765 @default.
- W2510112988 hasRelatedWork W2963982428 @default.
- W2510112988 hasRelatedWork W3033700680 @default.
- W2510112988 hasRelatedWork W3100062452 @default.
- W2510112988 hasRelatedWork W3105783410 @default.
- W2510112988 hasRelatedWork W3192388985 @default.
- W2510112988 isParatext "false" @default.
- W2510112988 isRetracted "false" @default.
- W2510112988 magId "2510112988" @default.
- W2510112988 workType "article" @default.