Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510116043> ?p ?o ?g. }
- W2510116043 endingPage "159" @default.
- W2510116043 startingPage "132" @default.
- W2510116043 abstract "Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250–350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching." @default.
- W2510116043 created "2016-09-16" @default.
- W2510116043 creator A5027690122 @default.
- W2510116043 creator A5035973549 @default.
- W2510116043 creator A5052416635 @default.
- W2510116043 creator A5086777794 @default.
- W2510116043 date "2016-11-01" @default.
- W2510116043 modified "2023-10-18" @default.
- W2510116043 title "Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D" @default.
- W2510116043 cites W1048007205 @default.
- W2510116043 cites W1518370280 @default.
- W2510116043 cites W1576070671 @default.
- W2510116043 cites W1592779548 @default.
- W2510116043 cites W1631925744 @default.
- W2510116043 cites W1841024394 @default.
- W2510116043 cites W1893068022 @default.
- W2510116043 cites W1938264244 @default.
- W2510116043 cites W1966983664 @default.
- W2510116043 cites W1968487231 @default.
- W2510116043 cites W1968766216 @default.
- W2510116043 cites W1970552011 @default.
- W2510116043 cites W1970961082 @default.
- W2510116043 cites W1976522262 @default.
- W2510116043 cites W1976984795 @default.
- W2510116043 cites W1980678287 @default.
- W2510116043 cites W1980843506 @default.
- W2510116043 cites W1982609069 @default.
- W2510116043 cites W1985847809 @default.
- W2510116043 cites W1988842153 @default.
- W2510116043 cites W1993894923 @default.
- W2510116043 cites W1995798238 @default.
- W2510116043 cites W1998048740 @default.
- W2510116043 cites W1999502028 @default.
- W2510116043 cites W2003331679 @default.
- W2510116043 cites W2003825787 @default.
- W2510116043 cites W2009176764 @default.
- W2510116043 cites W2010094459 @default.
- W2510116043 cites W2012411784 @default.
- W2510116043 cites W2017196712 @default.
- W2510116043 cites W2018366877 @default.
- W2510116043 cites W2020191076 @default.
- W2510116043 cites W2020726504 @default.
- W2510116043 cites W2020976208 @default.
- W2510116043 cites W2025801652 @default.
- W2510116043 cites W2025863397 @default.
- W2510116043 cites W2029187183 @default.
- W2510116043 cites W2039295387 @default.
- W2510116043 cites W2041398136 @default.
- W2510116043 cites W2045255334 @default.
- W2510116043 cites W2052060891 @default.
- W2510116043 cites W2052641018 @default.
- W2510116043 cites W2053455288 @default.
- W2510116043 cites W2055761381 @default.
- W2510116043 cites W2056309858 @default.
- W2510116043 cites W2058425690 @default.
- W2510116043 cites W2061555440 @default.
- W2510116043 cites W2061962799 @default.
- W2510116043 cites W2066200707 @default.
- W2510116043 cites W2068824049 @default.
- W2510116043 cites W2070937320 @default.
- W2510116043 cites W2072034675 @default.
- W2510116043 cites W2073040869 @default.
- W2510116043 cites W2074361563 @default.
- W2510116043 cites W2080025467 @default.
- W2510116043 cites W2085064498 @default.
- W2510116043 cites W2085721750 @default.
- W2510116043 cites W2087673255 @default.
- W2510116043 cites W2089507620 @default.
- W2510116043 cites W2098113105 @default.
- W2510116043 cites W2099535239 @default.
- W2510116043 cites W2109221183 @default.
- W2510116043 cites W2118168812 @default.
- W2510116043 cites W2127083348 @default.
- W2510116043 cites W2139778875 @default.
- W2510116043 cites W2140001621 @default.
- W2510116043 cites W2144000823 @default.
- W2510116043 cites W2144241858 @default.
- W2510116043 cites W2149602337 @default.
- W2510116043 cites W2157363681 @default.
- W2510116043 cites W2163042763 @default.
- W2510116043 cites W2170096039 @default.
- W2510116043 cites W2220306744 @default.
- W2510116043 cites W2231608875 @default.
- W2510116043 cites W2325944355 @default.
- W2510116043 cites W2615106566 @default.
- W2510116043 doi "https://doi.org/10.1016/j.gca.2016.08.009" @default.
- W2510116043 hasPublicationYear "2016" @default.
- W2510116043 type Work @default.
- W2510116043 sameAs 2510116043 @default.
- W2510116043 citedByCount "37" @default.
- W2510116043 countsByYear W25101160432017 @default.
- W2510116043 countsByYear W25101160432018 @default.
- W2510116043 countsByYear W25101160432019 @default.
- W2510116043 countsByYear W25101160432020 @default.
- W2510116043 countsByYear W25101160432021 @default.
- W2510116043 countsByYear W25101160432022 @default.
- W2510116043 countsByYear W25101160432023 @default.
- W2510116043 crossrefType "journal-article" @default.