Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510125615> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2510125615 endingPage "274" @default.
- W2510125615 startingPage "265" @default.
- W2510125615 abstract "Abstract The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction." @default.
- W2510125615 created "2016-09-16" @default.
- W2510125615 creator A5010177219 @default.
- W2510125615 creator A5069916821 @default.
- W2510125615 creator A5077831320 @default.
- W2510125615 date "2016-11-01" @default.
- W2510125615 modified "2023-10-14" @default.
- W2510125615 title "Predictive modelling of the granulation process using a systems-engineering approach" @default.
- W2510125615 cites W1976656565 @default.
- W2510125615 cites W1979890995 @default.
- W2510125615 cites W1983863396 @default.
- W2510125615 cites W1988998493 @default.
- W2510125615 cites W2000049887 @default.
- W2510125615 cites W2000541587 @default.
- W2510125615 cites W2003187834 @default.
- W2510125615 cites W2004530108 @default.
- W2510125615 cites W2019569903 @default.
- W2510125615 cites W2023796122 @default.
- W2510125615 cites W2032347311 @default.
- W2510125615 cites W2037311911 @default.
- W2510125615 cites W2038108293 @default.
- W2510125615 cites W2038948600 @default.
- W2510125615 cites W2041343508 @default.
- W2510125615 cites W2051968241 @default.
- W2510125615 cites W2055928350 @default.
- W2510125615 cites W2058971297 @default.
- W2510125615 cites W2065184486 @default.
- W2510125615 cites W2071803154 @default.
- W2510125615 cites W2075473763 @default.
- W2510125615 cites W2077875332 @default.
- W2510125615 cites W2090908269 @default.
- W2510125615 cites W2091322778 @default.
- W2510125615 cites W2092987071 @default.
- W2510125615 cites W2094792445 @default.
- W2510125615 cites W2100805904 @default.
- W2510125615 cites W2103496339 @default.
- W2510125615 cites W2169180050 @default.
- W2510125615 cites W2472356234 @default.
- W2510125615 doi "https://doi.org/10.1016/j.powtec.2016.08.049" @default.
- W2510125615 hasPublicationYear "2016" @default.
- W2510125615 type Work @default.
- W2510125615 sameAs 2510125615 @default.
- W2510125615 citedByCount "19" @default.
- W2510125615 countsByYear W25101256152017 @default.
- W2510125615 countsByYear W25101256152018 @default.
- W2510125615 countsByYear W25101256152019 @default.
- W2510125615 countsByYear W25101256152020 @default.
- W2510125615 countsByYear W25101256152021 @default.
- W2510125615 countsByYear W25101256152022 @default.
- W2510125615 countsByYear W25101256152023 @default.
- W2510125615 crossrefType "journal-article" @default.
- W2510125615 hasAuthorship W2510125615A5010177219 @default.
- W2510125615 hasAuthorship W2510125615A5069916821 @default.
- W2510125615 hasAuthorship W2510125615A5077831320 @default.
- W2510125615 hasBestOaLocation W25101256152 @default.
- W2510125615 hasConcept C111919701 @default.
- W2510125615 hasConcept C127413603 @default.
- W2510125615 hasConcept C187320778 @default.
- W2510125615 hasConcept C201995342 @default.
- W2510125615 hasConcept C21880701 @default.
- W2510125615 hasConcept C2994520618 @default.
- W2510125615 hasConcept C41008148 @default.
- W2510125615 hasConcept C88463166 @default.
- W2510125615 hasConcept C98045186 @default.
- W2510125615 hasConceptScore W2510125615C111919701 @default.
- W2510125615 hasConceptScore W2510125615C127413603 @default.
- W2510125615 hasConceptScore W2510125615C187320778 @default.
- W2510125615 hasConceptScore W2510125615C201995342 @default.
- W2510125615 hasConceptScore W2510125615C21880701 @default.
- W2510125615 hasConceptScore W2510125615C2994520618 @default.
- W2510125615 hasConceptScore W2510125615C41008148 @default.
- W2510125615 hasConceptScore W2510125615C88463166 @default.
- W2510125615 hasConceptScore W2510125615C98045186 @default.
- W2510125615 hasLocation W25101256151 @default.
- W2510125615 hasLocation W25101256152 @default.
- W2510125615 hasOpenAccess W2510125615 @default.
- W2510125615 hasPrimaryLocation W25101256151 @default.
- W2510125615 hasRelatedWork W1125791452 @default.
- W2510125615 hasRelatedWork W2320239699 @default.
- W2510125615 hasRelatedWork W2328032361 @default.
- W2510125615 hasRelatedWork W2516387086 @default.
- W2510125615 hasRelatedWork W2766048663 @default.
- W2510125615 hasRelatedWork W2767804580 @default.
- W2510125615 hasRelatedWork W2888048300 @default.
- W2510125615 hasRelatedWork W4300978198 @default.
- W2510125615 hasRelatedWork W890333416 @default.
- W2510125615 hasRelatedWork W970743010 @default.
- W2510125615 hasVolume "302" @default.
- W2510125615 isParatext "false" @default.
- W2510125615 isRetracted "false" @default.
- W2510125615 magId "2510125615" @default.
- W2510125615 workType "article" @default.