Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510151648> ?p ?o ?g. }
- W2510151648 endingPage "e3914" @default.
- W2510151648 startingPage "e3914" @default.
- W2510151648 abstract "In big data era, how to process large-scale data stream is one of the existing challenges. Feature extraction method has attracted much attention because of its effectiveness to data classification. Traditional classification algorithms may take less advantage of labeled samples information. Online learning and out-of-sample problems are also hot topics recently. To solve these problems, a novel algorithm named semi-supervised incremental feature extraction algorithm is proposed in this paper. First, we extract feature incrementally in unsupervised way. Then we propose a semi-supervised subspace learning algorithm by taking advantage of class information to adjust k-nearest neighbor weights. Third, we combine the unsupervised and semi-supervised feature extraction approaches to obtain objective function, in order to solve the out-of-sample learning problem. Experiments have been carried out on Machine learning datasets of University of California Irvine (UCI) datasets and real-world face image datasets (Olivetti faces (ORL), Yale, YaleB, and Rendered face). To demonstrate the proposed algorithm's expandability to process the large-scale data stream, classification experiments using Spark skill in parallel computation environment are performed, with comparisons with some related semi-supervised feature extraction methods. The experiment results and computational complex comparison demonstrate that the proposed algorithm can obtain good performance. Copyright © 2016 John Wiley & Sons, Ltd." @default.
- W2510151648 created "2016-09-16" @default.
- W2510151648 creator A5068911557 @default.
- W2510151648 creator A5085214289 @default.
- W2510151648 date "2016-08-02" @default.
- W2510151648 modified "2023-09-23" @default.
- W2510151648 title "Semi-supervised incremental feature extraction algorithm for large-scale data stream" @default.
- W2510151648 cites W1502782565 @default.
- W2510151648 cites W1564277727 @default.
- W2510151648 cites W1981613567 @default.
- W2510151648 cites W1984020445 @default.
- W2510151648 cites W1985602045 @default.
- W2510151648 cites W2000961858 @default.
- W2510151648 cites W2001141328 @default.
- W2510151648 cites W2002627773 @default.
- W2510151648 cites W2007877577 @default.
- W2510151648 cites W2014582301 @default.
- W2510151648 cites W2015966799 @default.
- W2510151648 cites W2035168298 @default.
- W2510151648 cites W2036310568 @default.
- W2510151648 cites W2040263621 @default.
- W2510151648 cites W2048299340 @default.
- W2510151648 cites W2053186076 @default.
- W2510151648 cites W2054704569 @default.
- W2510151648 cites W2056415893 @default.
- W2510151648 cites W2058232500 @default.
- W2510151648 cites W2061879449 @default.
- W2510151648 cites W2075170310 @default.
- W2510151648 cites W2077776048 @default.
- W2510151648 cites W2080322700 @default.
- W2510151648 cites W2088780712 @default.
- W2510151648 cites W2097308346 @default.
- W2510151648 cites W2101464618 @default.
- W2510151648 cites W2105055468 @default.
- W2510151648 cites W2105103777 @default.
- W2510151648 cites W2114296561 @default.
- W2510151648 cites W2140136381 @default.
- W2510151648 cites W2141681031 @default.
- W2510151648 cites W2148114066 @default.
- W2510151648 cites W2156761667 @default.
- W2510151648 cites W2158194116 @default.
- W2510151648 cites W2163584563 @default.
- W2510151648 cites W2167267197 @default.
- W2510151648 cites W2196042499 @default.
- W2510151648 cites W2406680892 @default.
- W2510151648 cites W2533099064 @default.
- W2510151648 cites W4298266977 @default.
- W2510151648 cites W2034249868 @default.
- W2510151648 doi "https://doi.org/10.1002/cpe.3914" @default.
- W2510151648 hasPublicationYear "2016" @default.
- W2510151648 type Work @default.
- W2510151648 sameAs 2510151648 @default.
- W2510151648 citedByCount "6" @default.
- W2510151648 countsByYear W25101516482017 @default.
- W2510151648 countsByYear W25101516482018 @default.
- W2510151648 countsByYear W25101516482019 @default.
- W2510151648 countsByYear W25101516482020 @default.
- W2510151648 crossrefType "journal-article" @default.
- W2510151648 hasAuthorship W2510151648A5068911557 @default.
- W2510151648 hasAuthorship W2510151648A5085214289 @default.
- W2510151648 hasConcept C113238511 @default.
- W2510151648 hasConcept C11413529 @default.
- W2510151648 hasConcept C119857082 @default.
- W2510151648 hasConcept C121332964 @default.
- W2510151648 hasConcept C124101348 @default.
- W2510151648 hasConcept C138885662 @default.
- W2510151648 hasConcept C153180895 @default.
- W2510151648 hasConcept C154945302 @default.
- W2510151648 hasConcept C199360897 @default.
- W2510151648 hasConcept C2776401178 @default.
- W2510151648 hasConcept C2778755073 @default.
- W2510151648 hasConcept C2781215313 @default.
- W2510151648 hasConcept C32834561 @default.
- W2510151648 hasConcept C41008148 @default.
- W2510151648 hasConcept C41895202 @default.
- W2510151648 hasConcept C52622490 @default.
- W2510151648 hasConcept C62520636 @default.
- W2510151648 hasConceptScore W2510151648C113238511 @default.
- W2510151648 hasConceptScore W2510151648C11413529 @default.
- W2510151648 hasConceptScore W2510151648C119857082 @default.
- W2510151648 hasConceptScore W2510151648C121332964 @default.
- W2510151648 hasConceptScore W2510151648C124101348 @default.
- W2510151648 hasConceptScore W2510151648C138885662 @default.
- W2510151648 hasConceptScore W2510151648C153180895 @default.
- W2510151648 hasConceptScore W2510151648C154945302 @default.
- W2510151648 hasConceptScore W2510151648C199360897 @default.
- W2510151648 hasConceptScore W2510151648C2776401178 @default.
- W2510151648 hasConceptScore W2510151648C2778755073 @default.
- W2510151648 hasConceptScore W2510151648C2781215313 @default.
- W2510151648 hasConceptScore W2510151648C32834561 @default.
- W2510151648 hasConceptScore W2510151648C41008148 @default.
- W2510151648 hasConceptScore W2510151648C41895202 @default.
- W2510151648 hasConceptScore W2510151648C52622490 @default.
- W2510151648 hasConceptScore W2510151648C62520636 @default.
- W2510151648 hasFunder F4320321001 @default.
- W2510151648 hasIssue "6" @default.
- W2510151648 hasLocation W25101516481 @default.
- W2510151648 hasOpenAccess W2510151648 @default.