Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510154752> ?p ?o ?g. }
- W2510154752 endingPage "341" @default.
- W2510154752 startingPage "331" @default.
- W2510154752 abstract "Abstract Subpixel hyperspectral detection is a kind of method which tries to locate targets in a hyperspectral image when the spectrum of the targets is given. Due to its subpixel nature, targets are often smaller than one pixel, which increases the difficulty of detection. Many algorithms have been proposed to tackle this problem, most of which model the noise in all spatial points of hyperspectral image by multivariate normal distribution. However, this model alone may not be an appropriate description of the noise distribution in hyperspectral image. After carefully studying the distribution of hyperspectral image, it is concluded that the gradient of noise also obeys normal distribution. In this paper two detectors are proposed: mixture gradient structured detector (MGSD) and mixture gradient unstructured detector (MGUD). These detectors are based on a new model which takes advantage of the distribution of the gradient of the noise. This makes the detectors more accordant with the practical situation. To evaluate the performance of the proposed detectors, three different data sets, including one synthesized data set and two real-world data sets, are used in the experiments. Results show that the proposed detectors have better performance than current subpixel detectors." @default.
- W2510154752 created "2016-09-16" @default.
- W2510154752 creator A5005604821 @default.
- W2510154752 creator A5011540763 @default.
- W2510154752 creator A5018824735 @default.
- W2510154752 date "2016-12-01" @default.
- W2510154752 modified "2023-10-12" @default.
- W2510154752 title "A target detection method for hyperspectral image based on mixture noise model" @default.
- W2510154752 cites W1526295910 @default.
- W2510154752 cites W1586994488 @default.
- W2510154752 cites W1968909084 @default.
- W2510154752 cites W1970099214 @default.
- W2510154752 cites W1972702299 @default.
- W2510154752 cites W2001045763 @default.
- W2510154752 cites W2014156763 @default.
- W2510154752 cites W2017448754 @default.
- W2510154752 cites W2022382128 @default.
- W2510154752 cites W2035299679 @default.
- W2510154752 cites W2037034832 @default.
- W2510154752 cites W2045032380 @default.
- W2510154752 cites W2047096209 @default.
- W2510154752 cites W2049538695 @default.
- W2510154752 cites W2058795991 @default.
- W2510154752 cites W2063537969 @default.
- W2510154752 cites W2067782748 @default.
- W2510154752 cites W2070424424 @default.
- W2510154752 cites W2070452328 @default.
- W2510154752 cites W2075556390 @default.
- W2510154752 cites W2093254866 @default.
- W2510154752 cites W2095343758 @default.
- W2510154752 cites W2096972831 @default.
- W2510154752 cites W2098535678 @default.
- W2510154752 cites W2105234315 @default.
- W2510154752 cites W2107014267 @default.
- W2510154752 cites W2110766716 @default.
- W2510154752 cites W2112225422 @default.
- W2510154752 cites W2114486983 @default.
- W2510154752 cites W2115366158 @default.
- W2510154752 cites W2117741752 @default.
- W2510154752 cites W2125341398 @default.
- W2510154752 cites W2140219630 @default.
- W2510154752 cites W2144158572 @default.
- W2510154752 cites W2144525515 @default.
- W2510154752 cites W2146365981 @default.
- W2510154752 cites W2146954653 @default.
- W2510154752 cites W2154624311 @default.
- W2510154752 cites W2157321686 @default.
- W2510154752 cites W2220312492 @default.
- W2510154752 cites W2334150308 @default.
- W2510154752 cites W2368744241 @default.
- W2510154752 cites W2411643563 @default.
- W2510154752 cites W285039866 @default.
- W2510154752 cites W4233760599 @default.
- W2510154752 cites W4249561842 @default.
- W2510154752 cites W4254979477 @default.
- W2510154752 cites W625476304 @default.
- W2510154752 doi "https://doi.org/10.1016/j.neucom.2016.08.015" @default.
- W2510154752 hasPublicationYear "2016" @default.
- W2510154752 type Work @default.
- W2510154752 sameAs 2510154752 @default.
- W2510154752 citedByCount "25" @default.
- W2510154752 countsByYear W25101547522017 @default.
- W2510154752 countsByYear W25101547522018 @default.
- W2510154752 countsByYear W25101547522019 @default.
- W2510154752 countsByYear W25101547522020 @default.
- W2510154752 countsByYear W25101547522021 @default.
- W2510154752 countsByYear W25101547522022 @default.
- W2510154752 countsByYear W25101547522023 @default.
- W2510154752 crossrefType "journal-article" @default.
- W2510154752 hasAuthorship W2510154752A5005604821 @default.
- W2510154752 hasAuthorship W2510154752A5011540763 @default.
- W2510154752 hasAuthorship W2510154752A5018824735 @default.
- W2510154752 hasConcept C115961682 @default.
- W2510154752 hasConcept C153180895 @default.
- W2510154752 hasConcept C154945302 @default.
- W2510154752 hasConcept C159078339 @default.
- W2510154752 hasConcept C31972630 @default.
- W2510154752 hasConcept C41008148 @default.
- W2510154752 hasConcept C99498987 @default.
- W2510154752 hasConceptScore W2510154752C115961682 @default.
- W2510154752 hasConceptScore W2510154752C153180895 @default.
- W2510154752 hasConceptScore W2510154752C154945302 @default.
- W2510154752 hasConceptScore W2510154752C159078339 @default.
- W2510154752 hasConceptScore W2510154752C31972630 @default.
- W2510154752 hasConceptScore W2510154752C41008148 @default.
- W2510154752 hasConceptScore W2510154752C99498987 @default.
- W2510154752 hasFunder F4320321001 @default.
- W2510154752 hasFunder F4320335777 @default.
- W2510154752 hasLocation W25101547521 @default.
- W2510154752 hasOpenAccess W2510154752 @default.
- W2510154752 hasPrimaryLocation W25101547521 @default.
- W2510154752 hasRelatedWork W1869808405 @default.
- W2510154752 hasRelatedWork W2018257962 @default.
- W2510154752 hasRelatedWork W2028628118 @default.
- W2510154752 hasRelatedWork W2031007444 @default.
- W2510154752 hasRelatedWork W2775464024 @default.
- W2510154752 hasRelatedWork W2783789044 @default.
- W2510154752 hasRelatedWork W2972973180 @default.