Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510167369> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2510167369 endingPage "48" @default.
- W2510167369 startingPage "33" @default.
- W2510167369 abstract "In machine learning, hyperparameter optimization is a challenging but necessary task that is usually approached in a computationally expensive manner such as grid-search. Out of this reason, surrogate based black-box optimization techniques such as sequential model-based optimization have been proposed which allow for a faster hyperparameter optimization. Recent research proposes to also integrate hyperparameter performances on past data sets to allow for a faster and more efficient hyperparameter optimization. In this paper, we use products of Gaussian process experts as surrogate models for hyperparameter optimization. Naturally, Gaussian processes are a decent choice as they offer good prediction accuracy as well as estimations about their uncertainty. Additionally, their hyperparameters can be tuned very effectively. However, in the light of large meta data sets, learning a single Gaussian process is not feasible as it involves inversion of a large kernel matrix. This directly limits their usefulness for hyperparameter optimization if large scale hyperparameter performances on past data sets are given. By using products of Gaussian process experts the scalability issues can be circumvened, however, this usually comes with the price of having less predictive accuracy. In our experiments, we show empirically that products of experts nevertheless perform very well compared to a variety of published surrogate models. Thus, we propose a surrogate model that performs as well as the current state of the art, is scalable to large scale meta knowledge, does not include hyperparameters itself and finally is even very easy to parallelize. The software related to this paper is available at https://github.com/nicoschilling/ECML2016 ." @default.
- W2510167369 created "2016-09-16" @default.
- W2510167369 creator A5002232506 @default.
- W2510167369 creator A5010971228 @default.
- W2510167369 creator A5039470755 @default.
- W2510167369 date "2016-01-01" @default.
- W2510167369 modified "2023-09-25" @default.
- W2510167369 title "Scalable Hyperparameter Optimization with Products of Gaussian Process Experts" @default.
- W2510167369 cites W1510052597 @default.
- W2510167369 cites W1663203009 @default.
- W2510167369 cites W1971421855 @default.
- W2510167369 cites W1973310094 @default.
- W2510167369 cites W2079182758 @default.
- W2510167369 cites W2084136177 @default.
- W2510167369 cites W2116064496 @default.
- W2510167369 cites W2157069634 @default.
- W2510167369 cites W2182070128 @default.
- W2510167369 cites W2200000192 @default.
- W2510167369 cites W2244094084 @default.
- W2510167369 cites W4211049957 @default.
- W2510167369 cites W60686164 @default.
- W2510167369 doi "https://doi.org/10.1007/978-3-319-46128-1_3" @default.
- W2510167369 hasPublicationYear "2016" @default.
- W2510167369 type Work @default.
- W2510167369 sameAs 2510167369 @default.
- W2510167369 citedByCount "20" @default.
- W2510167369 countsByYear W25101673692017 @default.
- W2510167369 countsByYear W25101673692018 @default.
- W2510167369 countsByYear W25101673692019 @default.
- W2510167369 countsByYear W25101673692020 @default.
- W2510167369 countsByYear W25101673692021 @default.
- W2510167369 countsByYear W25101673692022 @default.
- W2510167369 countsByYear W25101673692023 @default.
- W2510167369 crossrefType "book-chapter" @default.
- W2510167369 hasAuthorship W2510167369A5002232506 @default.
- W2510167369 hasAuthorship W2510167369A5010971228 @default.
- W2510167369 hasAuthorship W2510167369A5039470755 @default.
- W2510167369 hasConcept C10485038 @default.
- W2510167369 hasConcept C114614502 @default.
- W2510167369 hasConcept C119857082 @default.
- W2510167369 hasConcept C121332964 @default.
- W2510167369 hasConcept C12267149 @default.
- W2510167369 hasConcept C131675550 @default.
- W2510167369 hasConcept C154945302 @default.
- W2510167369 hasConcept C163716315 @default.
- W2510167369 hasConcept C2778049539 @default.
- W2510167369 hasConcept C33923547 @default.
- W2510167369 hasConcept C41008148 @default.
- W2510167369 hasConcept C48044578 @default.
- W2510167369 hasConcept C61326573 @default.
- W2510167369 hasConcept C62520636 @default.
- W2510167369 hasConcept C74193536 @default.
- W2510167369 hasConcept C77088390 @default.
- W2510167369 hasConcept C8642999 @default.
- W2510167369 hasConceptScore W2510167369C10485038 @default.
- W2510167369 hasConceptScore W2510167369C114614502 @default.
- W2510167369 hasConceptScore W2510167369C119857082 @default.
- W2510167369 hasConceptScore W2510167369C121332964 @default.
- W2510167369 hasConceptScore W2510167369C12267149 @default.
- W2510167369 hasConceptScore W2510167369C131675550 @default.
- W2510167369 hasConceptScore W2510167369C154945302 @default.
- W2510167369 hasConceptScore W2510167369C163716315 @default.
- W2510167369 hasConceptScore W2510167369C2778049539 @default.
- W2510167369 hasConceptScore W2510167369C33923547 @default.
- W2510167369 hasConceptScore W2510167369C41008148 @default.
- W2510167369 hasConceptScore W2510167369C48044578 @default.
- W2510167369 hasConceptScore W2510167369C61326573 @default.
- W2510167369 hasConceptScore W2510167369C62520636 @default.
- W2510167369 hasConceptScore W2510167369C74193536 @default.
- W2510167369 hasConceptScore W2510167369C77088390 @default.
- W2510167369 hasConceptScore W2510167369C8642999 @default.
- W2510167369 hasLocation W25101673691 @default.
- W2510167369 hasOpenAccess W2510167369 @default.
- W2510167369 hasPrimaryLocation W25101673691 @default.
- W2510167369 hasRelatedWork W2200000192 @default.
- W2510167369 hasRelatedWork W2405673391 @default.
- W2510167369 hasRelatedWork W2493480577 @default.
- W2510167369 hasRelatedWork W2510167369 @default.
- W2510167369 hasRelatedWork W2782093256 @default.
- W2510167369 hasRelatedWork W3129764450 @default.
- W2510167369 hasRelatedWork W3195699808 @default.
- W2510167369 hasRelatedWork W3199608561 @default.
- W2510167369 hasRelatedWork W4296591856 @default.
- W2510167369 hasRelatedWork W76331760 @default.
- W2510167369 isParatext "false" @default.
- W2510167369 isRetracted "false" @default.
- W2510167369 magId "2510167369" @default.
- W2510167369 workType "book-chapter" @default.