Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510179671> ?p ?o ?g. }
- W2510179671 abstract "This report demonstrates a technique for proving the anonymity guarantees of communication systems, using a mechanised theorem-prover. The approach is based on Shannon’s theory of information and can be used to analyse probabilistic programs. The information-theoretic metrics that are used for anonymity provide quantitative results, even in the case of partial anonymity. Many of the developments in this text are applicable to information leakage in general, rather than solely to privacy properties. By developing the framework within a mechanised theorem-prover, all proofs are guaranteed to be logically and mathematically consistent with respect to a given model. Moreover, the specification of a system can be parameterised and desirable properties of the system can quantify over those parameters; as a result, properties can be proved about the system in general, rather than specific instances. In order to develop the analysis framework described in this text, the underlying theories of information, probability, and measure had to be formalised in the theorem-prover; those formalisation are explained in detail. That foundational work is of general interest and not limited to the applications illustrated here. The meticulous, extensional approach that has been taken ensures that mathematical consistency is maintained. A series of examples illustrate how formalised information theory can be used to analyse and prove the information leakage of programs modelled in the theorem-prover. Those examples consider a number of different threat models and show how they can be characterised in the framework proposed. Finally, the tools developed are used to prove the anonymity of the dining cryptographers (DC) protocol, thereby demonstrating the use of the framework and its applicability to proving privacy properties; the DC protocol is a standard benchmark for new methods of analysing anonymity systems. This work includes the first machine-assisted proof of anonymity of the DC protocol for an unbounded number of cryptographers." @default.
- W2510179671 created "2016-09-16" @default.
- W2510179671 creator A5053637961 @default.
- W2510179671 date "2010-01-01" @default.
- W2510179671 modified "2023-09-23" @default.
- W2510179671 title "Anonymity, information, and machine-assisted proof" @default.
- W2510179671 cites W131462842 @default.
- W2510179671 cites W1485030181 @default.
- W2510179671 cites W1496462336 @default.
- W2510179671 cites W1505755285 @default.
- W2510179671 cites W1509835774 @default.
- W2510179671 cites W1512598008 @default.
- W2510179671 cites W1531671642 @default.
- W2510179671 cites W1538510509 @default.
- W2510179671 cites W1544787586 @default.
- W2510179671 cites W1545174125 @default.
- W2510179671 cites W1545371006 @default.
- W2510179671 cites W1559498407 @default.
- W2510179671 cites W1568586753 @default.
- W2510179671 cites W1571783718 @default.
- W2510179671 cites W1572982068 @default.
- W2510179671 cites W1582716554 @default.
- W2510179671 cites W1585861293 @default.
- W2510179671 cites W1597087347 @default.
- W2510179671 cites W1599111390 @default.
- W2510179671 cites W1600990450 @default.
- W2510179671 cites W1601195943 @default.
- W2510179671 cites W1602844557 @default.
- W2510179671 cites W1603966055 @default.
- W2510179671 cites W1606058619 @default.
- W2510179671 cites W1606338671 @default.
- W2510179671 cites W1655958391 @default.
- W2510179671 cites W166317722 @default.
- W2510179671 cites W1672487674 @default.
- W2510179671 cites W1734364899 @default.
- W2510179671 cites W1764405480 @default.
- W2510179671 cites W1798924124 @default.
- W2510179671 cites W1812425403 @default.
- W2510179671 cites W1834982738 @default.
- W2510179671 cites W1863642815 @default.
- W2510179671 cites W1875604605 @default.
- W2510179671 cites W1882297107 @default.
- W2510179671 cites W1896373471 @default.
- W2510179671 cites W1920159904 @default.
- W2510179671 cites W1940060540 @default.
- W2510179671 cites W1949722297 @default.
- W2510179671 cites W1951554580 @default.
- W2510179671 cites W1971453259 @default.
- W2510179671 cites W1977764760 @default.
- W2510179671 cites W1978044849 @default.
- W2510179671 cites W1978081288 @default.
- W2510179671 cites W1978884755 @default.
- W2510179671 cites W1987581799 @default.
- W2510179671 cites W1989007732 @default.
- W2510179671 cites W1995875735 @default.
- W2510179671 cites W2002421583 @default.
- W2510179671 cites W2030231203 @default.
- W2510179671 cites W2039319436 @default.
- W2510179671 cites W2041905826 @default.
- W2510179671 cites W2045649582 @default.
- W2510179671 cites W2048075614 @default.
- W2510179671 cites W2056277260 @default.
- W2510179671 cites W2068391935 @default.
- W2510179671 cites W2070631692 @default.
- W2510179671 cites W2077732028 @default.
- W2510179671 cites W2078114603 @default.
- W2510179671 cites W2078813897 @default.
- W2510179671 cites W2080914957 @default.
- W2510179671 cites W2084146220 @default.
- W2510179671 cites W2087611017 @default.
- W2510179671 cites W2087811006 @default.
- W2510179671 cites W2091891040 @default.
- W2510179671 cites W2094873755 @default.
- W2510179671 cites W2096094850 @default.
- W2510179671 cites W2097151854 @default.
- W2510179671 cites W2099111195 @default.
- W2510179671 cites W2100019646 @default.
- W2510179671 cites W2101827827 @default.
- W2510179671 cites W2103647628 @default.
- W2510179671 cites W2103953153 @default.
- W2510179671 cites W2107289862 @default.
- W2510179671 cites W2109579436 @default.
- W2510179671 cites W2110930028 @default.
- W2510179671 cites W2113081700 @default.
- W2510179671 cites W2114715837 @default.
- W2510179671 cites W2117320004 @default.
- W2510179671 cites W2120901006 @default.
- W2510179671 cites W2122882636 @default.
- W2510179671 cites W2123735079 @default.
- W2510179671 cites W2124251840 @default.
- W2510179671 cites W2126879115 @default.
- W2510179671 cites W2127295197 @default.
- W2510179671 cites W2128735745 @default.
- W2510179671 cites W2130099852 @default.
- W2510179671 cites W2131093318 @default.
- W2510179671 cites W2133996557 @default.
- W2510179671 cites W2139015713 @default.
- W2510179671 cites W2140355923 @default.
- W2510179671 cites W2142174533 @default.
- W2510179671 cites W2142229514 @default.