Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510199013> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2510199013 endingPage "755" @default.
- W2510199013 startingPage "739" @default.
- W2510199013 abstract "Traditionally, in health surveillance, high risk zones are identified based only on the residence address or the working place of diseased individuals. This provides little information about the places where people are infected, the truly important information for disease control. The recent availability of spatial data generated by geotagged social media posts offers a unique opportunity: by identifying and following diseased individuals, we obtain a collection of sequential geo-located events, each sequence being issued by a social media user. The sequence of map positions implicitly provides an estimation of the users’ social trajectories as they drift on the map. The existing data mining techniques for spatial cluster detection fail to address this new setting as they require a single location to each individual under analysis. In this paper we present two stochastic models with their associated algorithms to mine this new type of data. The Visit Model finds the most likely zones that a diseased person visits, while the Infection Model finds the most likely zones where a person gets infected while visiting. We demonstrate the applicability and effectiveness of our proposed models by applying them to more than 100 million geotagged tweets from Brazil in 2015. In particular, we target the identification of infection hot spots associated with dengue, a mosquito-transmitted disease that affects millions of people in Brazil annually, and billions worldwide. We applied our algorithms to data from 11 large cities in Brazil and found infection hot spots, showing the usefulness of our methods for disease surveillance." @default.
- W2510199013 created "2016-09-16" @default.
- W2510199013 creator A5007969490 @default.
- W2510199013 creator A5009808819 @default.
- W2510199013 creator A5015728115 @default.
- W2510199013 creator A5054124802 @default.
- W2510199013 creator A5062070301 @default.
- W2510199013 date "2016-01-01" @default.
- W2510199013 modified "2023-09-27" @default.
- W2510199013 title "Infection Hot Spot Mining from Social Media Trajectories" @default.
- W2510199013 cites W1970143540 @default.
- W2510199013 cites W1994027616 @default.
- W2510199013 cites W2002151188 @default.
- W2510199013 cites W2017805816 @default.
- W2510199013 cites W2019850843 @default.
- W2510199013 cites W2028085927 @default.
- W2510199013 cites W2038943544 @default.
- W2510199013 cites W2051897513 @default.
- W2510199013 cites W2070781416 @default.
- W2510199013 cites W2083772019 @default.
- W2510199013 cites W2087337791 @default.
- W2510199013 cites W2118938540 @default.
- W2510199013 cites W2119721623 @default.
- W2510199013 cites W2124499489 @default.
- W2510199013 cites W2126194848 @default.
- W2510199013 cites W2127750112 @default.
- W2510199013 cites W2131222241 @default.
- W2510199013 cites W2137229158 @default.
- W2510199013 cites W2274370547 @default.
- W2510199013 cites W2294857104 @default.
- W2510199013 doi "https://doi.org/10.1007/978-3-319-46227-1_46" @default.
- W2510199013 hasPublicationYear "2016" @default.
- W2510199013 type Work @default.
- W2510199013 sameAs 2510199013 @default.
- W2510199013 citedByCount "9" @default.
- W2510199013 countsByYear W25101990132017 @default.
- W2510199013 countsByYear W25101990132018 @default.
- W2510199013 countsByYear W25101990132019 @default.
- W2510199013 countsByYear W25101990132021 @default.
- W2510199013 crossrefType "book-chapter" @default.
- W2510199013 hasAuthorship W2510199013A5007969490 @default.
- W2510199013 hasAuthorship W2510199013A5009808819 @default.
- W2510199013 hasAuthorship W2510199013A5015728115 @default.
- W2510199013 hasAuthorship W2510199013A5054124802 @default.
- W2510199013 hasAuthorship W2510199013A5062070301 @default.
- W2510199013 hasConcept C111919701 @default.
- W2510199013 hasConcept C136764020 @default.
- W2510199013 hasConcept C199672914 @default.
- W2510199013 hasConcept C41008148 @default.
- W2510199013 hasConcept C518677369 @default.
- W2510199013 hasConceptScore W2510199013C111919701 @default.
- W2510199013 hasConceptScore W2510199013C136764020 @default.
- W2510199013 hasConceptScore W2510199013C199672914 @default.
- W2510199013 hasConceptScore W2510199013C41008148 @default.
- W2510199013 hasConceptScore W2510199013C518677369 @default.
- W2510199013 hasLocation W25101990131 @default.
- W2510199013 hasOpenAccess W2510199013 @default.
- W2510199013 hasPrimaryLocation W25101990131 @default.
- W2510199013 hasRelatedWork W1587857126 @default.
- W2510199013 hasRelatedWork W2056851929 @default.
- W2510199013 hasRelatedWork W2167368428 @default.
- W2510199013 hasRelatedWork W2252731128 @default.
- W2510199013 hasRelatedWork W2360245112 @default.
- W2510199013 hasRelatedWork W2369166484 @default.
- W2510199013 hasRelatedWork W2379142291 @default.
- W2510199013 hasRelatedWork W2736580264 @default.
- W2510199013 hasRelatedWork W2748952813 @default.
- W2510199013 hasRelatedWork W4304092003 @default.
- W2510199013 isParatext "false" @default.
- W2510199013 isRetracted "false" @default.
- W2510199013 magId "2510199013" @default.
- W2510199013 workType "book-chapter" @default.