Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510367179> ?p ?o ?g. }
- W2510367179 endingPage "447" @default.
- W2510367179 startingPage "432" @default.
- W2510367179 abstract "Prostate cancer exhibits intra-tumoral heterogeneity that we hypothesize to be the leading confounding factor contributing to the underperformance of the current pre-treatment clinical-pathological and genomic assessment. These limitations impose an urgent need to develop better computational tools to identify men with low risk of prostate cancer versus others that may be at risk for developing metastatic cancer. The patient stratification will directly translate to patient treatments, wherein decisions regarding active surveillance or intensified therapy are made. Multiparametric MRI (mpMRI) provides the platform to investigate tumor heterogeneity by mapping the individual tumor habitats. We hypothesize that quantitative assessment (radiomics) of these habitats results in distinct combinations of descriptors that reveal regions with different physiologies and phenotypes. Radiogenomics, a discipline connecting tumor morphology described by radiomic and its genome described by the genomic data, has the potential to derive radio phenotypes that both correlate to and complement existing validated genomic risk stratification biomarkers. In this article we first describe the radiomic pipeline, tailored for analysis of prostate mpMRI, and in the process we introduce our particular implementations of radiomics modules. We also summarize the efforts in the radiomics field related to prostate cancer diagnosis and assessment of aggressiveness. Finally, we describe our results from radiogenomic analysis, based on mpMRI-Ultrasound (MRI-US) biopsies and discuss the potential of future applications of this technique. The mpMRI radiomics data indicate that the platform would significantly improve the biopsy targeting of prostate habitats through better recognition of indolent versus aggressive disease, thereby facilitating a more personalized approach to prostate cancer management. The expectation to non-invasively identify habitats with high probability of housing aggressive cancers would result in directed biopsies that are more informative and actionable. Conversely, providing evidence for lack of disease would reduce the incidence of non-informative biopsies. In radiotherapy of prostate cancer, dose escalation has been shown to reduce biochemical failure. Dose escalation only to determinate prostate habitats has the potential to improve tumor control with less toxicity than when the entire prostate is dose escalated." @default.
- W2510367179 created "2016-09-16" @default.
- W2510367179 creator A5004434800 @default.
- W2510367179 creator A5014582211 @default.
- W2510367179 creator A5015246625 @default.
- W2510367179 creator A5019770974 @default.
- W2510367179 creator A5021448310 @default.
- W2510367179 creator A5029283526 @default.
- W2510367179 creator A5044704274 @default.
- W2510367179 creator A5047437519 @default.
- W2510367179 creator A5063389942 @default.
- W2510367179 creator A5082346230 @default.
- W2510367179 creator A5083382401 @default.
- W2510367179 date "2016-08-01" @default.
- W2510367179 modified "2023-10-01" @default.
- W2510367179 title "Prostate cancer radiomics and the promise of radiogenomics" @default.
- W2510367179 cites W1510003450 @default.
- W2510367179 cites W1554670498 @default.
- W2510367179 cites W1558633536 @default.
- W2510367179 cites W1771067798 @default.
- W2510367179 cites W1888052965 @default.
- W2510367179 cites W1917894041 @default.
- W2510367179 cites W1966042790 @default.
- W2510367179 cites W1972298018 @default.
- W2510367179 cites W1973550636 @default.
- W2510367179 cites W1990786792 @default.
- W2510367179 cites W1998343146 @default.
- W2510367179 cites W2006157165 @default.
- W2510367179 cites W2009101549 @default.
- W2510367179 cites W2011335777 @default.
- W2510367179 cites W2014695103 @default.
- W2510367179 cites W2016302913 @default.
- W2510367179 cites W2017565497 @default.
- W2510367179 cites W2025971174 @default.
- W2510367179 cites W2027423045 @default.
- W2510367179 cites W2027486254 @default.
- W2510367179 cites W2027967978 @default.
- W2510367179 cites W2028265240 @default.
- W2510367179 cites W2028643667 @default.
- W2510367179 cites W2031320118 @default.
- W2510367179 cites W2032558189 @default.
- W2510367179 cites W2032778875 @default.
- W2510367179 cites W2040257338 @default.
- W2510367179 cites W2042098439 @default.
- W2510367179 cites W2044999678 @default.
- W2510367179 cites W2048088264 @default.
- W2510367179 cites W2050436923 @default.
- W2510367179 cites W2052047802 @default.
- W2510367179 cites W2055575746 @default.
- W2510367179 cites W2058782089 @default.
- W2510367179 cites W2072626310 @default.
- W2510367179 cites W2076702645 @default.
- W2510367179 cites W2081608592 @default.
- W2510367179 cites W2082328647 @default.
- W2510367179 cites W2083763767 @default.
- W2510367179 cites W2089513130 @default.
- W2510367179 cites W2097475056 @default.
- W2510367179 cites W2103004421 @default.
- W2510367179 cites W2105386786 @default.
- W2510367179 cites W2106556127 @default.
- W2510367179 cites W2106869018 @default.
- W2510367179 cites W2109923019 @default.
- W2510367179 cites W2111389142 @default.
- W2510367179 cites W2114909008 @default.
- W2510367179 cites W2119056140 @default.
- W2510367179 cites W2124735791 @default.
- W2510367179 cites W2125878029 @default.
- W2510367179 cites W2127839127 @default.
- W2510367179 cites W2128739912 @default.
- W2510367179 cites W2137393851 @default.
- W2510367179 cites W2141059777 @default.
- W2510367179 cites W2141291610 @default.
- W2510367179 cites W2143383719 @default.
- W2510367179 cites W2154884327 @default.
- W2510367179 cites W2157996158 @default.
- W2510367179 cites W2158099560 @default.
- W2510367179 cites W2168219096 @default.
- W2510367179 cites W2174661749 @default.
- W2510367179 cites W2401040035 @default.
- W2510367179 cites W313065440 @default.
- W2510367179 cites W2064130501 @default.
- W2510367179 doi "https://doi.org/10.21037/tcr.2016.06.20" @default.
- W2510367179 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5703221" @default.
- W2510367179 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29188191" @default.
- W2510367179 hasPublicationYear "2016" @default.
- W2510367179 type Work @default.
- W2510367179 sameAs 2510367179 @default.
- W2510367179 citedByCount "101" @default.
- W2510367179 countsByYear W25103671792017 @default.
- W2510367179 countsByYear W25103671792018 @default.
- W2510367179 countsByYear W25103671792019 @default.
- W2510367179 countsByYear W25103671792020 @default.
- W2510367179 countsByYear W25103671792021 @default.
- W2510367179 countsByYear W25103671792022 @default.
- W2510367179 countsByYear W25103671792023 @default.
- W2510367179 crossrefType "journal-article" @default.
- W2510367179 hasAuthorship W2510367179A5004434800 @default.
- W2510367179 hasAuthorship W2510367179A5014582211 @default.