Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510483670> ?p ?o ?g. }
- W2510483670 endingPage "22117" @default.
- W2510483670 startingPage "22106" @default.
- W2510483670 abstract "Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo. As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases. Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo. As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases." @default.
- W2510483670 created "2016-09-16" @default.
- W2510483670 creator A5007738960 @default.
- W2510483670 creator A5030179892 @default.
- W2510483670 creator A5065673727 @default.
- W2510483670 creator A5074916163 @default.
- W2510483670 creator A5078035656 @default.
- W2510483670 creator A5080001443 @default.
- W2510483670 date "2016-10-01" @default.
- W2510483670 modified "2023-10-11" @default.
- W2510483670 title "New Helical Binding Domain Mediates a Glycosyltransferase Activity of a Bifunctional Protein" @default.
- W2510483670 cites W1492032298 @default.
- W2510483670 cites W1907239588 @default.
- W2510483670 cites W1908152603 @default.
- W2510483670 cites W1949848418 @default.
- W2510483670 cites W1963268238 @default.
- W2510483670 cites W1969005588 @default.
- W2510483670 cites W1972832065 @default.
- W2510483670 cites W1973246226 @default.
- W2510483670 cites W1980781560 @default.
- W2510483670 cites W1994095141 @default.
- W2510483670 cites W2010403338 @default.
- W2510483670 cites W2014197969 @default.
- W2510483670 cites W2030517878 @default.
- W2510483670 cites W2030696036 @default.
- W2510483670 cites W2038789765 @default.
- W2510483670 cites W2039871389 @default.
- W2510483670 cites W2046310670 @default.
- W2510483670 cites W2050462562 @default.
- W2510483670 cites W2051293849 @default.
- W2510483670 cites W2054051063 @default.
- W2510483670 cites W2057128960 @default.
- W2510483670 cites W2061199142 @default.
- W2510483670 cites W2063271557 @default.
- W2510483670 cites W2071958174 @default.
- W2510483670 cites W2072522851 @default.
- W2510483670 cites W2077739032 @default.
- W2510483670 cites W2079505151 @default.
- W2510483670 cites W2079550209 @default.
- W2510483670 cites W2084780834 @default.
- W2510483670 cites W2091708050 @default.
- W2510483670 cites W2095849700 @default.
- W2510483670 cites W2099899918 @default.
- W2510483670 cites W2103171510 @default.
- W2510483670 cites W2112340752 @default.
- W2510483670 cites W2119186634 @default.
- W2510483670 cites W2123429740 @default.
- W2510483670 cites W2127544247 @default.
- W2510483670 cites W2129816323 @default.
- W2510483670 cites W2143304841 @default.
- W2510483670 cites W2144081223 @default.
- W2510483670 cites W2144998676 @default.
- W2510483670 cites W2145624653 @default.
- W2510483670 cites W2157495692 @default.
- W2510483670 cites W2158521587 @default.
- W2510483670 cites W2163290872 @default.
- W2510483670 cites W2164511751 @default.
- W2510483670 cites W2166526453 @default.
- W2510483670 cites W2180229411 @default.
- W2510483670 cites W59208181 @default.
- W2510483670 doi "https://doi.org/10.1074/jbc.m116.731695" @default.
- W2510483670 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5063993" @default.
- W2510483670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27539847" @default.
- W2510483670 hasPublicationYear "2016" @default.
- W2510483670 type Work @default.
- W2510483670 sameAs 2510483670 @default.
- W2510483670 citedByCount "20" @default.
- W2510483670 countsByYear W25104836702016 @default.
- W2510483670 countsByYear W25104836702017 @default.
- W2510483670 countsByYear W25104836702018 @default.
- W2510483670 countsByYear W25104836702019 @default.
- W2510483670 countsByYear W25104836702020 @default.
- W2510483670 countsByYear W25104836702021 @default.
- W2510483670 countsByYear W25104836702022 @default.
- W2510483670 countsByYear W25104836702023 @default.
- W2510483670 crossrefType "journal-article" @default.
- W2510483670 hasAuthorship W2510483670A5007738960 @default.
- W2510483670 hasAuthorship W2510483670A5030179892 @default.
- W2510483670 hasAuthorship W2510483670A5065673727 @default.
- W2510483670 hasAuthorship W2510483670A5074916163 @default.
- W2510483670 hasAuthorship W2510483670A5078035656 @default.
- W2510483670 hasAuthorship W2510483670A5080001443 @default.
- W2510483670 hasBestOaLocation W25104836701 @default.
- W2510483670 hasConcept C104317684 @default.
- W2510483670 hasConcept C108625454 @default.
- W2510483670 hasConcept C131934819 @default.
- W2510483670 hasConcept C144292202 @default.
- W2510483670 hasConcept C161019410 @default.
- W2510483670 hasConcept C181199279 @default.
- W2510483670 hasConcept C2776414213 @default.
- W2510483670 hasConcept C2777313579 @default.
- W2510483670 hasConcept C2777858569 @default.
- W2510483670 hasConcept C523546767 @default.
- W2510483670 hasConcept C54355233 @default.
- W2510483670 hasConcept C55493867 @default.
- W2510483670 hasConcept C58123911 @default.
- W2510483670 hasConcept C86803240 @default.
- W2510483670 hasConceptScore W2510483670C104317684 @default.