Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510536591> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2510536591 abstract "Since traffic congestion became an increasingly complex problem, research in traffic surveillance tremendously increased in the last decades. The data obtained from the vehicles' paths is non-linear with a high complexity. This type of data is frequently treated using regression methods to obtain reasonable results and to keep track of unrealistic outliers and measured errors. Vision-based techniques are used to obtain this data from static cameras located close by to highways or high congestion traffic points. The use of Unmanned Aerial Vehicles (UAVs) for traffic surveillance is another potential and promising application of this type of robotic platform. The main advantages are that it can be equipped with different sensors based on the requirement of the situation, such as RGB, infrared or multispectral cameras and it can change its' position easily based on the traffic situation requirements. This paper describes a vision algorithm for the background subtraction based vehicle tracking approach for vehicle speed estimation using aerial images taken from an UAV. The raw data obtained from the tracker are smoothed with several common regression methods to evaluate their effectiveness to be applied to this type of non-linear data. Furthermore, an extended version of the locally weighted regression algorithm was implemented, which was proven to be the most accurate method for smoothing the tracking results. This data was compared with the ground truth data acquired by a speed sensor installed in the vehicle." @default.
- W2510536591 created "2016-09-16" @default.
- W2510536591 creator A5035305173 @default.
- W2510536591 creator A5042705900 @default.
- W2510536591 creator A5085280731 @default.
- W2510536591 date "2016-06-01" @default.
- W2510536591 modified "2023-09-26" @default.
- W2510536591 title "Estimating speed profiles from aerial vision — A comparison of regression based sampling techniques" @default.
- W2510536591 cites W1544411027 @default.
- W2510536591 cites W1972160828 @default.
- W2510536591 cites W1980097476 @default.
- W2510536591 cites W2008406490 @default.
- W2510536591 cites W2039240409 @default.
- W2510536591 cites W2071860582 @default.
- W2510536591 cites W2091845343 @default.
- W2510536591 cites W2111200408 @default.
- W2510536591 cites W2150823344 @default.
- W2510536591 cites W2157890992 @default.
- W2510536591 cites W94242302 @default.
- W2510536591 doi "https://doi.org/10.1109/med.2016.7536006" @default.
- W2510536591 hasPublicationYear "2016" @default.
- W2510536591 type Work @default.
- W2510536591 sameAs 2510536591 @default.
- W2510536591 citedByCount "0" @default.
- W2510536591 crossrefType "proceedings-article" @default.
- W2510536591 hasAuthorship W2510536591A5035305173 @default.
- W2510536591 hasAuthorship W2510536591A5042705900 @default.
- W2510536591 hasAuthorship W2510536591A5085280731 @default.
- W2510536591 hasConcept C146849305 @default.
- W2510536591 hasConcept C154945302 @default.
- W2510536591 hasConcept C160633673 @default.
- W2510536591 hasConcept C173163844 @default.
- W2510536591 hasConcept C31972630 @default.
- W2510536591 hasConcept C32653426 @default.
- W2510536591 hasConcept C3770464 @default.
- W2510536591 hasConcept C41008148 @default.
- W2510536591 hasConcept C79337645 @default.
- W2510536591 hasConcept C82990744 @default.
- W2510536591 hasConceptScore W2510536591C146849305 @default.
- W2510536591 hasConceptScore W2510536591C154945302 @default.
- W2510536591 hasConceptScore W2510536591C160633673 @default.
- W2510536591 hasConceptScore W2510536591C173163844 @default.
- W2510536591 hasConceptScore W2510536591C31972630 @default.
- W2510536591 hasConceptScore W2510536591C32653426 @default.
- W2510536591 hasConceptScore W2510536591C3770464 @default.
- W2510536591 hasConceptScore W2510536591C41008148 @default.
- W2510536591 hasConceptScore W2510536591C79337645 @default.
- W2510536591 hasConceptScore W2510536591C82990744 @default.
- W2510536591 hasLocation W25105365911 @default.
- W2510536591 hasOpenAccess W2510536591 @default.
- W2510536591 hasPrimaryLocation W25105365911 @default.
- W2510536591 hasRelatedWork W1978018834 @default.
- W2510536591 hasRelatedWork W2027259026 @default.
- W2510536591 hasRelatedWork W2041462605 @default.
- W2510536591 hasRelatedWork W2057774093 @default.
- W2510536591 hasRelatedWork W2067170667 @default.
- W2510536591 hasRelatedWork W2120135834 @default.
- W2510536591 hasRelatedWork W2183155249 @default.
- W2510536591 hasRelatedWork W2290677027 @default.
- W2510536591 hasRelatedWork W2333165372 @default.
- W2510536591 hasRelatedWork W2560216485 @default.
- W2510536591 hasRelatedWork W2742866697 @default.
- W2510536591 hasRelatedWork W2792185056 @default.
- W2510536591 hasRelatedWork W2963915818 @default.
- W2510536591 hasRelatedWork W2963962634 @default.
- W2510536591 hasRelatedWork W3039086578 @default.
- W2510536591 hasRelatedWork W3094399399 @default.
- W2510536591 hasRelatedWork W3112546822 @default.
- W2510536591 hasRelatedWork W3126358756 @default.
- W2510536591 hasRelatedWork W3137939016 @default.
- W2510536591 hasRelatedWork W3000827973 @default.
- W2510536591 isParatext "false" @default.
- W2510536591 isRetracted "false" @default.
- W2510536591 magId "2510536591" @default.
- W2510536591 workType "article" @default.