Matches in SemOpenAlex for { <https://semopenalex.org/work/W2510977193> ?p ?o ?g. }
- W2510977193 endingPage "1471" @default.
- W2510977193 startingPage "1453" @default.
- W2510977193 abstract "Reliable estimation of long-range dependence parameters is vital in time series. For example, in environmental and climate science such estimation is often key to understanding climate dynamics, variability and often prediction. The challenge of data collection in such disciplines means that, in practice, the sampling pattern is either irregular or blighted by missing observations. Unfortunately, virtually all existing Hurst parameter estimation methods assume regularly sampled time series and require modification to cope with irregularity or missing data. However, such interventions come at the price of inducing higher estimator bias and variation, often worryingly ignored. This article proposes a new Hurst exponent estimation method which naturally copes with data sampling irregularity. The new method is based on a multiscale lifting transform exploiting its ability to produce wavelet-like coefficients on irregular data and, simultaneously, to effect a necessary powerful decorrelation of those coefficients. Simulations show that our method is accurate and effective, performing well against competitors even in regular data settings. Armed with this evidence our method sheds new light on long-memory intensity results in environmental and climate science applications, sometimes suggesting that different scientific conclusions may need to be drawn." @default.
- W2510977193 created "2016-09-16" @default.
- W2510977193 creator A5062068953 @default.
- W2510977193 creator A5067487855 @default.
- W2510977193 creator A5083214421 @default.
- W2510977193 date "2016-09-03" @default.
- W2510977193 modified "2023-09-27" @default.
- W2510977193 title "A wavelet lifting approach to long-memory estimation" @default.
- W2510977193 cites W1508427692 @default.
- W2510977193 cites W1515484043 @default.
- W2510977193 cites W1588860668 @default.
- W2510977193 cites W1594723396 @default.
- W2510977193 cites W1598649019 @default.
- W2510977193 cites W1607632979 @default.
- W2510977193 cites W1965068440 @default.
- W2510977193 cites W1968798675 @default.
- W2510977193 cites W1970102186 @default.
- W2510977193 cites W1974581749 @default.
- W2510977193 cites W1974618482 @default.
- W2510977193 cites W1977512462 @default.
- W2510977193 cites W1986316936 @default.
- W2510977193 cites W1986366694 @default.
- W2510977193 cites W1986372184 @default.
- W2510977193 cites W1986990752 @default.
- W2510977193 cites W1996387237 @default.
- W2510977193 cites W2011413345 @default.
- W2510977193 cites W2012951355 @default.
- W2510977193 cites W2012964785 @default.
- W2510977193 cites W2017821362 @default.
- W2510977193 cites W2019368654 @default.
- W2510977193 cites W2020743612 @default.
- W2510977193 cites W2023815042 @default.
- W2510977193 cites W2025900077 @default.
- W2510977193 cites W2030177986 @default.
- W2510977193 cites W2031753087 @default.
- W2510977193 cites W2040368492 @default.
- W2510977193 cites W2040829107 @default.
- W2510977193 cites W2041817790 @default.
- W2510977193 cites W2042683845 @default.
- W2510977193 cites W2047129703 @default.
- W2510977193 cites W2047627251 @default.
- W2510977193 cites W2053191845 @default.
- W2510977193 cites W2055781590 @default.
- W2510977193 cites W2065691363 @default.
- W2510977193 cites W2066741947 @default.
- W2510977193 cites W2067180668 @default.
- W2510977193 cites W2070474233 @default.
- W2510977193 cites W2076593368 @default.
- W2510977193 cites W2081191044 @default.
- W2510977193 cites W2084428435 @default.
- W2510977193 cites W2084528906 @default.
- W2510977193 cites W2085040762 @default.
- W2510977193 cites W2089438877 @default.
- W2510977193 cites W2100010101 @default.
- W2510977193 cites W2100478220 @default.
- W2510977193 cites W2102214133 @default.
- W2510977193 cites W2106430853 @default.
- W2510977193 cites W2121056014 @default.
- W2510977193 cites W2136195593 @default.
- W2510977193 cites W2139997679 @default.
- W2510977193 cites W2142221197 @default.
- W2510977193 cites W2144602403 @default.
- W2510977193 cites W2151567244 @default.
- W2510977193 cites W2158384564 @default.
- W2510977193 cites W2161480748 @default.
- W2510977193 cites W2164214015 @default.
- W2510977193 cites W2165773639 @default.
- W2510977193 cites W2168500104 @default.
- W2510977193 cites W2171873915 @default.
- W2510977193 cites W2178791007 @default.
- W2510977193 cites W2341760625 @default.
- W2510977193 cites W2497534953 @default.
- W2510977193 cites W3159223345 @default.
- W2510977193 cites W3180436685 @default.
- W2510977193 cites W4242565096 @default.
- W2510977193 cites W4251238138 @default.
- W2510977193 cites W4295332281 @default.
- W2510977193 doi "https://doi.org/10.1007/s11222-016-9698-2" @default.
- W2510977193 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6979511" @default.
- W2510977193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32025109" @default.
- W2510977193 hasPublicationYear "2016" @default.
- W2510977193 type Work @default.
- W2510977193 sameAs 2510977193 @default.
- W2510977193 citedByCount "14" @default.
- W2510977193 countsByYear W25109771932016 @default.
- W2510977193 countsByYear W25109771932018 @default.
- W2510977193 countsByYear W25109771932019 @default.
- W2510977193 countsByYear W25109771932020 @default.
- W2510977193 countsByYear W25109771932021 @default.
- W2510977193 countsByYear W25109771932022 @default.
- W2510977193 countsByYear W25109771932023 @default.
- W2510977193 crossrefType "journal-article" @default.
- W2510977193 hasAuthorship W2510977193A5062068953 @default.
- W2510977193 hasAuthorship W2510977193A5067487855 @default.
- W2510977193 hasAuthorship W2510977193A5083214421 @default.
- W2510977193 hasBestOaLocation W25109771931 @default.
- W2510977193 hasConcept C105795698 @default.
- W2510977193 hasConcept C106131492 @default.