Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511011158> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2511011158 abstract "To solve heterogeneity and gauge problems cloud computing proffer abundance of services to users. Users without percipient how transcendent the service and without any cognizance of Quality of Service (QOS) of services in cloud computing, users use the services and feel perturb, unsatisfied. To avoid user ennui, dissatisfaction, soreness and annoy by using a service it is very important to induce and elucidate awareness of Quality of Service (QOS) of services to users before using the services in cloud. For any cloud service provider to accumulate profit, to cope with other service providers and to perpetuate in the business field successfully it is very much imperative to emolument customer satisfaction, so cloud service provider should ameliorate QOS of service to augment customer satisfaction. How cognizance of QOS of services is useful for users who use services in forthcoming and how improving QOS of service is useful for service providers in cloud is inaugurated and designed in this paper. Knowing about QOS for one service from one user feedback is agile but it is very striving and time conceiving to get awareness of QOS of all services in cloud computing by collecting feedback of users who already used the service, so in order to surmount this predicament clustering technique is used. One of the important task in data mining is clustering which is propitious for profuse users so by using clustering concept users who want to use service in future will dexterously and agilely can get awareness of QOS of services in cloud through Intutionistic Fuzzy C-means clustering algorithm. Multiple Abettors are used to comply and dispose this process so multi Abettor system is inaugurated to transact the work. K-means, Hard C-means and Fuzzy C-means clustering algorithms are not much efficacious, proficient, and conducive for clustering QOS values of services so in this paper for giving awareness of QOS of services in cloud Intutionistic Fuzzy C-means algorithm is used for clustering. As Intutionistic Fuzzy C-means algorithm clustering algorithm abides of both membership function and hesitation function the feedback of QOS of services not given by users who used services is also handled. In the inaugurated process while collecting QOS feedback of services in cloud from future users, security contention from extrinsic people may occur and this predicament is solved by corroboration method in this paper. By the concept prefaced in this paper users can analyze agilely which service is best to use among available services in cloud and feel happy, satisfied by using the best service. By analyzing the output obtained from clustering, service providers can improve their QOS of services by using Pandect technique as customer satisfaction is the primary thing for any service provider to sustain in business, to gain clover and lucre. In this paper the unexpurgated process Awareness of Quality of Service and Convalescent Quality of service of services in cloud is elucidated with help of architecture." @default.
- W2511011158 created "2016-09-16" @default.
- W2511011158 creator A5021683270 @default.
- W2511011158 creator A5072858557 @default.
- W2511011158 date "2016-02-01" @default.
- W2511011158 modified "2023-09-25" @default.
- W2511011158 title "Cognizance and Ameliorate of Quality of Service Using Aggregated Intutionistic Fuzzy C-Means Algorithm, Abettor-Based Model, Corroboration Method, and Pandect Method in Cloud Computing" @default.
- W2511011158 cites W1507409649 @default.
- W2511011158 cites W1555603165 @default.
- W2511011158 cites W1557923305 @default.
- W2511011158 cites W1980564456 @default.
- W2511011158 cites W1988122146 @default.
- W2511011158 cites W2027654459 @default.
- W2511011158 cites W2034070506 @default.
- W2511011158 cites W2071068630 @default.
- W2511011158 cites W2095561225 @default.
- W2511011158 cites W2113076747 @default.
- W2511011158 cites W2114296561 @default.
- W2511011158 cites W2131646073 @default.
- W2511011158 cites W2912565176 @default.
- W2511011158 cites W3159512266 @default.
- W2511011158 doi "https://doi.org/10.1109/iacc.2016.26" @default.
- W2511011158 hasPublicationYear "2016" @default.
- W2511011158 type Work @default.
- W2511011158 sameAs 2511011158 @default.
- W2511011158 citedByCount "3" @default.
- W2511011158 countsByYear W25110111582018 @default.
- W2511011158 countsByYear W25110111582019 @default.
- W2511011158 countsByYear W25110111582022 @default.
- W2511011158 crossrefType "proceedings-article" @default.
- W2511011158 hasAuthorship W2511011158A5021683270 @default.
- W2511011158 hasAuthorship W2511011158A5072858557 @default.
- W2511011158 hasConcept C111919701 @default.
- W2511011158 hasConcept C116537 @default.
- W2511011158 hasConcept C140781008 @default.
- W2511011158 hasConcept C144133560 @default.
- W2511011158 hasConcept C154945302 @default.
- W2511011158 hasConcept C16151460 @default.
- W2511011158 hasConcept C162853370 @default.
- W2511011158 hasConcept C169761439 @default.
- W2511011158 hasConcept C2780378061 @default.
- W2511011158 hasConcept C31258907 @default.
- W2511011158 hasConcept C41008148 @default.
- W2511011158 hasConcept C5119721 @default.
- W2511011158 hasConcept C61063171 @default.
- W2511011158 hasConcept C73555534 @default.
- W2511011158 hasConcept C79974875 @default.
- W2511011158 hasConcept C97300177 @default.
- W2511011158 hasConceptScore W2511011158C111919701 @default.
- W2511011158 hasConceptScore W2511011158C116537 @default.
- W2511011158 hasConceptScore W2511011158C140781008 @default.
- W2511011158 hasConceptScore W2511011158C144133560 @default.
- W2511011158 hasConceptScore W2511011158C154945302 @default.
- W2511011158 hasConceptScore W2511011158C16151460 @default.
- W2511011158 hasConceptScore W2511011158C162853370 @default.
- W2511011158 hasConceptScore W2511011158C169761439 @default.
- W2511011158 hasConceptScore W2511011158C2780378061 @default.
- W2511011158 hasConceptScore W2511011158C31258907 @default.
- W2511011158 hasConceptScore W2511011158C41008148 @default.
- W2511011158 hasConceptScore W2511011158C5119721 @default.
- W2511011158 hasConceptScore W2511011158C61063171 @default.
- W2511011158 hasConceptScore W2511011158C73555534 @default.
- W2511011158 hasConceptScore W2511011158C79974875 @default.
- W2511011158 hasConceptScore W2511011158C97300177 @default.
- W2511011158 hasLocation W25110111581 @default.
- W2511011158 hasOpenAccess W2511011158 @default.
- W2511011158 hasPrimaryLocation W25110111581 @default.
- W2511011158 hasRelatedWork W146778241 @default.
- W2511011158 hasRelatedWork W1539356425 @default.
- W2511011158 hasRelatedWork W1968746438 @default.
- W2511011158 hasRelatedWork W1991824304 @default.
- W2511011158 hasRelatedWork W2031044506 @default.
- W2511011158 hasRelatedWork W2035592349 @default.
- W2511011158 hasRelatedWork W2053858166 @default.
- W2511011158 hasRelatedWork W2094551291 @default.
- W2511011158 hasRelatedWork W2108669897 @default.
- W2511011158 hasRelatedWork W2187160620 @default.
- W2511011158 hasRelatedWork W2248315212 @default.
- W2511011158 hasRelatedWork W2293573259 @default.
- W2511011158 hasRelatedWork W2474346265 @default.
- W2511011158 hasRelatedWork W2546558890 @default.
- W2511011158 hasRelatedWork W2607004375 @default.
- W2511011158 hasRelatedWork W2738512059 @default.
- W2511011158 hasRelatedWork W2896416490 @default.
- W2511011158 hasRelatedWork W2904489315 @default.
- W2511011158 hasRelatedWork W2971389174 @default.
- W2511011158 hasRelatedWork W2555501722 @default.
- W2511011158 isParatext "false" @default.
- W2511011158 isRetracted "false" @default.
- W2511011158 magId "2511011158" @default.
- W2511011158 workType "article" @default.