Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511344593> ?p ?o ?g. }
- W2511344593 endingPage "120" @default.
- W2511344593 startingPage "109" @default.
- W2511344593 abstract "Type III secretion systems (T3SSs) are sophisticated multiprotein injection machines of Gram-negative bacteria, which translocate multiple effector proteins from the bacterial cytosol directly into the cytosol of targeted host cells. The effector translocation is essential for the pathogenesis of a wide range of Gram-negative bacterial pathogens. Several of the known anti-inflammatory effectors have attracted attention as potential drug candidates. A new concept is emerging to employ bacterial proteins to modulate inflammatory responses in humans without a requirement for their particular ‘parent’ bacteria. Instead of targeting individual cytokines or receptors stoichiometrically, it might be beneficial to address inflammatory signaling pathways upstream of cytokine production to more broadly inhibit inflammatory responses by dampening the expression of signaling molecules. Bacterial pathogens have developed intriguing virulence mechanisms, including several sophisticated nanomachines, for injecting effector proteins to manipulate host immune signaling pathways for their own benefit. Therefore, bacterial genomes harbor a wealth of information about how to manipulate the defense systems of the host. Current understanding addresses virulence mechanisms mostly as targets for antimicrobials. We propose a change of paradigm by exploiting bacterial effectors not as targets but as tools for the directed manipulation of host signaling – for the benefit of the host. Recently, effector proteins have been identified that autonomously translocate into host cells, representing a novel class of cell-penetrating peptides (CPPs) or effectors (CPEs). Moreover, autonomous cell penetration overcomes a major hurdle in pharmacology by transducing specific therapeutic agents to intracellular targets. Bacterial pathogens have developed intriguing virulence mechanisms, including several sophisticated nanomachines, for injecting effector proteins to manipulate host immune signaling pathways for their own benefit. Therefore, bacterial genomes harbor a wealth of information about how to manipulate the defense systems of the host. Current understanding addresses virulence mechanisms mostly as targets for antimicrobials. We propose a change of paradigm by exploiting bacterial effectors not as targets but as tools for the directed manipulation of host signaling – for the benefit of the host. Recently, effector proteins have been identified that autonomously translocate into host cells, representing a novel class of cell-penetrating peptides (CPPs) or effectors (CPEs). Moreover, autonomous cell penetration overcomes a major hurdle in pharmacology by transducing specific therapeutic agents to intracellular targets. a malfunction of the immune system, where components of the immune system mistakenly attack healthy tissues in the body. disorder in which a patientʼs humoral immune system is activated against the body's own protein. product derived from living sources for prevention, treatment, or cure of diseases. generally these are relatively short peptides having the ability to cross cell membranes, either alone or in combination/association with a bioactive cargo. bacterial effector proteins that have the ability to enter host cells without the requirement of additional bacterial factors. combinatorial approach of fusing variable CPPs with a ʻtool-box’ of functional peptide sequences. a type of protein secreted by cells of the immune system that mediate the communication and response of and between cells. translocation of peptides and proteins across membranes. the ensemble of known active microbial effector proteins. the uptake of extracellular substances into the cell by active transport. the ensemble of biological structures and mechanisms that protects the body from foreign substances and pathogens. a reaction of living tissues to infection, irritation, or other injury. a disease caused by entry of a microbial organism (bacterium, protozoan, fungi, or virus) into the body of the host where it grows and replicates. over-reaction of the innate immune system and its subsequent downstream signaling. a biological agent that causes disease. a protein export system that transports newly synthesized proteins to the extracellular space. continuous or discontinuous stretch of amino acids increasing the specificity of a compound for particular cells, tissues, or subcellular sites. a protein export system in the cell wall of Gram-negative bacteria that acts as a ‘molecular syringe’ or ‘nanomachine’ and injects effector proteins directly into the host cell cytoplasm. a microbial component that can manipulate and/or damage host cells, thereby increasing the probability of infection and disease." @default.
- W2511344593 created "2016-09-16" @default.
- W2511344593 creator A5034946687 @default.
- W2511344593 creator A5059769657 @default.
- W2511344593 date "2017-02-01" @default.
- W2511344593 modified "2023-10-15" @default.
- W2511344593 title "Cell-Penetrating Bacterial Effector Proteins: Better Tools than Targets" @default.
- W2511344593 cites W1546822460 @default.
- W2511344593 cites W1825085207 @default.
- W2511344593 cites W1948348705 @default.
- W2511344593 cites W1969785724 @default.
- W2511344593 cites W1970840055 @default.
- W2511344593 cites W1970942128 @default.
- W2511344593 cites W1972711580 @default.
- W2511344593 cites W1977975441 @default.
- W2511344593 cites W1982301681 @default.
- W2511344593 cites W1984283801 @default.
- W2511344593 cites W1990890768 @default.
- W2511344593 cites W1993125234 @default.
- W2511344593 cites W1997648709 @default.
- W2511344593 cites W2000155917 @default.
- W2511344593 cites W2001582257 @default.
- W2511344593 cites W2003726865 @default.
- W2511344593 cites W2004946369 @default.
- W2511344593 cites W2013264917 @default.
- W2511344593 cites W2018271515 @default.
- W2511344593 cites W2019152307 @default.
- W2511344593 cites W2029346749 @default.
- W2511344593 cites W2038720675 @default.
- W2511344593 cites W2055455845 @default.
- W2511344593 cites W2056137958 @default.
- W2511344593 cites W2061183130 @default.
- W2511344593 cites W2062565002 @default.
- W2511344593 cites W2064709939 @default.
- W2511344593 cites W2072545910 @default.
- W2511344593 cites W2075634764 @default.
- W2511344593 cites W2076859770 @default.
- W2511344593 cites W2079335891 @default.
- W2511344593 cites W2080971086 @default.
- W2511344593 cites W2082175825 @default.
- W2511344593 cites W2083063739 @default.
- W2511344593 cites W2088545939 @default.
- W2511344593 cites W2089657872 @default.
- W2511344593 cites W2092000721 @default.
- W2511344593 cites W2092327932 @default.
- W2511344593 cites W2120466274 @default.
- W2511344593 cites W2124334818 @default.
- W2511344593 cites W2130497192 @default.
- W2511344593 cites W2130599662 @default.
- W2511344593 cites W2133271381 @default.
- W2511344593 cites W2137584261 @default.
- W2511344593 cites W2143398242 @default.
- W2511344593 cites W2146172133 @default.
- W2511344593 cites W2171526970 @default.
- W2511344593 cites W2211884070 @default.
- W2511344593 cites W2220780917 @default.
- W2511344593 doi "https://doi.org/10.1016/j.tibtech.2016.08.002" @default.
- W2511344593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27592802" @default.
- W2511344593 hasPublicationYear "2017" @default.
- W2511344593 type Work @default.
- W2511344593 sameAs 2511344593 @default.
- W2511344593 citedByCount "23" @default.
- W2511344593 countsByYear W25113445932017 @default.
- W2511344593 countsByYear W25113445932018 @default.
- W2511344593 countsByYear W25113445932019 @default.
- W2511344593 countsByYear W25113445932020 @default.
- W2511344593 countsByYear W25113445932021 @default.
- W2511344593 countsByYear W25113445932022 @default.
- W2511344593 countsByYear W25113445932023 @default.
- W2511344593 crossrefType "journal-article" @default.
- W2511344593 hasAuthorship W2511344593A5034946687 @default.
- W2511344593 hasAuthorship W2511344593A5059769657 @default.
- W2511344593 hasConcept C104317684 @default.
- W2511344593 hasConcept C150555746 @default.
- W2511344593 hasConcept C153726182 @default.
- W2511344593 hasConcept C181199279 @default.
- W2511344593 hasConcept C49039625 @default.
- W2511344593 hasConcept C51785407 @default.
- W2511344593 hasConcept C54355233 @default.
- W2511344593 hasConcept C55493867 @default.
- W2511344593 hasConcept C60987743 @default.
- W2511344593 hasConcept C62478195 @default.
- W2511344593 hasConcept C79879829 @default.
- W2511344593 hasConcept C86803240 @default.
- W2511344593 hasConcept C95444343 @default.
- W2511344593 hasConcept C98539663 @default.
- W2511344593 hasConceptScore W2511344593C104317684 @default.
- W2511344593 hasConceptScore W2511344593C150555746 @default.
- W2511344593 hasConceptScore W2511344593C153726182 @default.
- W2511344593 hasConceptScore W2511344593C181199279 @default.
- W2511344593 hasConceptScore W2511344593C49039625 @default.
- W2511344593 hasConceptScore W2511344593C51785407 @default.
- W2511344593 hasConceptScore W2511344593C54355233 @default.
- W2511344593 hasConceptScore W2511344593C55493867 @default.
- W2511344593 hasConceptScore W2511344593C60987743 @default.
- W2511344593 hasConceptScore W2511344593C62478195 @default.
- W2511344593 hasConceptScore W2511344593C79879829 @default.
- W2511344593 hasConceptScore W2511344593C86803240 @default.