Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511405152> ?p ?o ?g. }
- W2511405152 endingPage "e351" @default.
- W2511405152 startingPage "e351" @default.
- W2511405152 abstract "We examined the efficiency, specificity, and mutational signatures of zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 systems designed to target the gene encoding the transcriptional repressor BCL11A, in human K562 cells and human CD34+ progenitor cells. ZFNs and TALENs were delivered as in vitro transcribed mRNA through electroporation; CRISPR/Cas9 was codelivered by Cas9 mRNA with plasmid-encoded guideRNA (gRNA) (pU6.g1) or in vitro transcribed gRNA (gR.1). Analyses of efficacy revealed that for these specific reagents and the delivery methods used, the ZFNs gave rise to more allelic disruption in the targeted locus compared to the TALENs and CRISPR/Cas9, which was associated with increased levels of fetal hemoglobin in erythroid cells produced in vitro from nuclease-treated CD34+ cells. Genome-wide analysis to evaluate the specificity of the nucleases revealed high specificity of this specific ZFN to the target site, while specific TALENs and CRISPRs evaluated showed off-target cleavage activity. ZFN gene-edited CD34+ cells had the capacity to engraft in NOD-PrkdcSCID-IL2Rγnull mice, while retaining multi-lineage potential, in contrast to TALEN gene-edited CD34+ cells. CRISPR engraftment levels mirrored the increased relative plasmid-mediated toxicity of pU6.g1/Cas9 in hematopoietic stem/progenitor cells (HSPCs), highlighting the value for the further improvements of CRISPR/Cas9 delivery in primary human HSPCs. We examined the efficiency, specificity, and mutational signatures of zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 systems designed to target the gene encoding the transcriptional repressor BCL11A, in human K562 cells and human CD34+ progenitor cells. ZFNs and TALENs were delivered as in vitro transcribed mRNA through electroporation; CRISPR/Cas9 was codelivered by Cas9 mRNA with plasmid-encoded guideRNA (gRNA) (pU6.g1) or in vitro transcribed gRNA (gR.1). Analyses of efficacy revealed that for these specific reagents and the delivery methods used, the ZFNs gave rise to more allelic disruption in the targeted locus compared to the TALENs and CRISPR/Cas9, which was associated with increased levels of fetal hemoglobin in erythroid cells produced in vitro from nuclease-treated CD34+ cells. Genome-wide analysis to evaluate the specificity of the nucleases revealed high specificity of this specific ZFN to the target site, while specific TALENs and CRISPRs evaluated showed off-target cleavage activity. ZFN gene-edited CD34+ cells had the capacity to engraft in NOD-PrkdcSCID-IL2Rγnull mice, while retaining multi-lineage potential, in contrast to TALEN gene-edited CD34+ cells. CRISPR engraftment levels mirrored the increased relative plasmid-mediated toxicity of pU6.g1/Cas9 in hematopoietic stem/progenitor cells (HSPCs), highlighting the value for the further improvements of CRISPR/Cas9 delivery in primary human HSPCs." @default.
- W2511405152 created "2016-09-16" @default.
- W2511405152 creator A5004231475 @default.
- W2511405152 creator A5011660493 @default.
- W2511405152 creator A5013062959 @default.
- W2511405152 creator A5032426349 @default.
- W2511405152 creator A5032720690 @default.
- W2511405152 creator A5035159178 @default.
- W2511405152 creator A5039832836 @default.
- W2511405152 creator A5050222789 @default.
- W2511405152 creator A5050971129 @default.
- W2511405152 creator A5069458345 @default.
- W2511405152 creator A5087970613 @default.
- W2511405152 creator A5090140313 @default.
- W2511405152 date "2016-01-01" @default.
- W2511405152 modified "2023-10-14" @default.
- W2511405152 title "Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases" @default.
- W2511405152 cites W1855348513 @default.
- W2511405152 cites W1968165696 @default.
- W2511405152 cites W1979216961 @default.
- W2511405152 cites W1995497292 @default.
- W2511405152 cites W1998167494 @default.
- W2511405152 cites W2001887791 @default.
- W2511405152 cites W2003171404 @default.
- W2511405152 cites W2003797386 @default.
- W2511405152 cites W2009626008 @default.
- W2511405152 cites W2016110802 @default.
- W2511405152 cites W2016501862 @default.
- W2511405152 cites W2020505437 @default.
- W2511405152 cites W2025074364 @default.
- W2511405152 cites W2028543816 @default.
- W2511405152 cites W2031891979 @default.
- W2511405152 cites W2033380734 @default.
- W2511405152 cites W2036176224 @default.
- W2511405152 cites W2036308544 @default.
- W2511405152 cites W2039333435 @default.
- W2511405152 cites W2049584544 @default.
- W2511405152 cites W2062254735 @default.
- W2511405152 cites W2064815984 @default.
- W2511405152 cites W2067036696 @default.
- W2511405152 cites W2069888248 @default.
- W2511405152 cites W2070172761 @default.
- W2511405152 cites W2070876549 @default.
- W2511405152 cites W2070879341 @default.
- W2511405152 cites W2077659966 @default.
- W2511405152 cites W2089894746 @default.
- W2511405152 cites W2095093585 @default.
- W2511405152 cites W2098027759 @default.
- W2511405152 cites W2099106733 @default.
- W2511405152 cites W2109352986 @default.
- W2511405152 cites W2125524975 @default.
- W2511405152 cites W2129735847 @default.
- W2511405152 cites W2134881764 @default.
- W2511405152 cites W2143208261 @default.
- W2511405152 cites W2148050025 @default.
- W2511405152 cites W2152737712 @default.
- W2511405152 cites W2155829072 @default.
- W2511405152 cites W2165869860 @default.
- W2511405152 cites W2168245648 @default.
- W2511405152 cites W2209402024 @default.
- W2511405152 cites W2224398381 @default.
- W2511405152 cites W2247762492 @default.
- W2511405152 cites W2275797929 @default.
- W2511405152 cites W577293753 @default.
- W2511405152 doi "https://doi.org/10.1038/mtna.2016.52" @default.
- W2511405152 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5023398" @default.
- W2511405152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28131278" @default.
- W2511405152 hasPublicationYear "2016" @default.
- W2511405152 type Work @default.
- W2511405152 sameAs 2511405152 @default.
- W2511405152 citedByCount "41" @default.
- W2511405152 countsByYear W25114051522017 @default.
- W2511405152 countsByYear W25114051522018 @default.
- W2511405152 countsByYear W25114051522019 @default.
- W2511405152 countsByYear W25114051522020 @default.
- W2511405152 countsByYear W25114051522021 @default.
- W2511405152 countsByYear W25114051522022 @default.
- W2511405152 countsByYear W25114051522023 @default.
- W2511405152 crossrefType "journal-article" @default.
- W2511405152 hasAuthorship W2511405152A5004231475 @default.
- W2511405152 hasAuthorship W2511405152A5011660493 @default.
- W2511405152 hasAuthorship W2511405152A5013062959 @default.
- W2511405152 hasAuthorship W2511405152A5032426349 @default.
- W2511405152 hasAuthorship W2511405152A5032720690 @default.
- W2511405152 hasAuthorship W2511405152A5035159178 @default.
- W2511405152 hasAuthorship W2511405152A5039832836 @default.
- W2511405152 hasAuthorship W2511405152A5050222789 @default.
- W2511405152 hasAuthorship W2511405152A5050971129 @default.
- W2511405152 hasAuthorship W2511405152A5069458345 @default.
- W2511405152 hasAuthorship W2511405152A5087970613 @default.
- W2511405152 hasAuthorship W2511405152A5090140313 @default.
- W2511405152 hasBestOaLocation W25114051521 @default.
- W2511405152 hasConcept C104317684 @default.
- W2511405152 hasConcept C111829913 @default.
- W2511405152 hasConcept C132455925 @default.
- W2511405152 hasConcept C144501496 @default.
- W2511405152 hasConcept C153911025 @default.
- W2511405152 hasConcept C2777271071 @default.