Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511751433> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2511751433 abstract "“Evidence-based sentencing” informs criminal sentencing determinations by using statistically derived risk assessment tools to predict a defendant’s likelihood of committing future crimes. By relying on data-driven risk assessment tools, this practice applies Big Data techniques to sentencing. This Article challenges the perception that such risk assessment tools neutrally classify a defendant’s recidivism risk. Scientists who construct such tools necessarily make normative choices and embed them in the tools’ design. Such choices – including how the scientists formulate the data set, how they define “recidivism” and which factors they select to create a risk tool’s underlying algorithm – all require subjective judgment calls and can introduce inadvertent bias. Rendered invisible once tools have been created, decisions about how to select, process and analyze data amount to distinct, if unintended, sentencing policy choices when judges use such risk assessment tools through evidence-based sentencing. That data scientists make such calls present three unique concerns. First, tool creators face diverging interests when exercising their discretion. Data scientists tend to make design choices based on data robustness and tool accuracy, but such interests can conflict with or even contradict sentencing policy. Second, tool creators are ill-equipped to resolve existing racial disparities in the criminal justice system, but their design choices potentially replicate and exacerbate these disparities significantly. Finally, tool creators have little incentive to disclose the policy and data choices made, leading to misuse of and misrepresentation about the value of their seemingly objective and scientifically derived information. A partial solution lies in requiring more transparency about the recidivism risk tools' design. Additionally, those with criminal justice expertise must be included in the tool design process. This Article calls for disclosure of data processing decisions and risk assessment tool assumptions, and review by trained governmental entities to translate the design choices for consumption by judges and probation officers in states that permit evidence-based sentencing. Recognizing the intricate and problematic connection between Big Data and evidence-based sentencing, this Article concludes by considering obstacles to even this modest call for oversight in such a new and sometimes inaccessible area of criminal justice reform." @default.
- W2511751433 created "2016-09-16" @default.
- W2511751433 creator A5070177792 @default.
- W2511751433 date "2016-01-01" @default.
- W2511751433 modified "2023-09-25" @default.
- W2511751433 title "Constructing Recidivism Risk for Sentencing" @default.
- W2511751433 cites W2044816925 @default.
- W2511751433 cites W2511751433 @default.
- W2511751433 cites W4236955484 @default.
- W2511751433 cites W4237709405 @default.
- W2511751433 cites W4241400958 @default.
- W2511751433 cites W4242507171 @default.
- W2511751433 cites W4244365448 @default.
- W2511751433 doi "https://doi.org/10.2139/ssrn.2821136" @default.
- W2511751433 hasPublicationYear "2016" @default.
- W2511751433 type Work @default.
- W2511751433 sameAs 2511751433 @default.
- W2511751433 citedByCount "3" @default.
- W2511751433 countsByYear W25117514332016 @default.
- W2511751433 countsByYear W25117514332021 @default.
- W2511751433 crossrefType "journal-article" @default.
- W2511751433 hasAuthorship W2511751433A5070177792 @default.
- W2511751433 hasConcept C144133560 @default.
- W2511751433 hasConcept C15744967 @default.
- W2511751433 hasConcept C162118730 @default.
- W2511751433 hasConcept C17744445 @default.
- W2511751433 hasConcept C2776090404 @default.
- W2511751433 hasConcept C73484699 @default.
- W2511751433 hasConceptScore W2511751433C144133560 @default.
- W2511751433 hasConceptScore W2511751433C15744967 @default.
- W2511751433 hasConceptScore W2511751433C162118730 @default.
- W2511751433 hasConceptScore W2511751433C17744445 @default.
- W2511751433 hasConceptScore W2511751433C2776090404 @default.
- W2511751433 hasConceptScore W2511751433C73484699 @default.
- W2511751433 hasLocation W25117514331 @default.
- W2511751433 hasOpenAccess W2511751433 @default.
- W2511751433 hasPrimaryLocation W25117514331 @default.
- W2511751433 hasRelatedWork W1493289252 @default.
- W2511751433 hasRelatedWork W1968045214 @default.
- W2511751433 hasRelatedWork W1978202969 @default.
- W2511751433 hasRelatedWork W2075076337 @default.
- W2511751433 hasRelatedWork W2187875646 @default.
- W2511751433 hasRelatedWork W2311655854 @default.
- W2511751433 hasRelatedWork W2748952813 @default.
- W2511751433 hasRelatedWork W2899084033 @default.
- W2511751433 hasRelatedWork W2982064250 @default.
- W2511751433 hasRelatedWork W4249485719 @default.
- W2511751433 isParatext "false" @default.
- W2511751433 isRetracted "false" @default.
- W2511751433 magId "2511751433" @default.
- W2511751433 workType "article" @default.