Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511809805> ?p ?o ?g. }
- W2511809805 abstract "The zero-temperature dynamical structure factor $S(q,omega)$ of one-dimensional hard rods is computed using state-of-the-art quantum Monte Carlo and analytic continuation techniques, complemented by a Bethe Ansatz analysis. As the density increases, $S(q,omega)$ reveals a crossover from the Tonks-Girardeau gas to a quasi-solid regime, along which the low-energy properties are found in agreement with the nonlinear Luttinger liquid theory. Our quantitative estimate of $S(q,omega)$ extends beyond the low-energy limit and confirms a theoretical prediction regarding the behavior of $S(q,omega)$ at specific wavevectors $mathcal{Q}_n=n 2 pi/a$, where $a$ is the core radius, resulting from the interplay of the particle-hole boundaries of suitably rescaled ideal Fermi gases. We observe significant similarities between hard rods and one-dimensional $^4$He at high density, suggesting that the hard-rods model may provide an accurate description of dense one-dimensional liquids of quantum particles interacting through a strongly repulsive, finite-range potential." @default.
- W2511809805 created "2016-09-16" @default.
- W2511809805 creator A5003561218 @default.
- W2511809805 creator A5016355927 @default.
- W2511809805 creator A5017327903 @default.
- W2511809805 creator A5075242038 @default.
- W2511809805 creator A5081704417 @default.
- W2511809805 date "2016-10-13" @default.
- W2511809805 modified "2023-10-18" @default.
- W2511809805 title "Dynamical structure factor of one-dimensional hard rods" @default.
- W2511809805 cites W1563834402 @default.
- W2511809805 cites W1594058877 @default.
- W2511809805 cites W1658890454 @default.
- W2511809805 cites W1739654778 @default.
- W2511809805 cites W1757846996 @default.
- W2511809805 cites W1965265318 @default.
- W2511809805 cites W1965931022 @default.
- W2511809805 cites W1966742966 @default.
- W2511809805 cites W1967689477 @default.
- W2511809805 cites W1970386941 @default.
- W2511809805 cites W1975635086 @default.
- W2511809805 cites W1977012752 @default.
- W2511809805 cites W1979370208 @default.
- W2511809805 cites W1979374168 @default.
- W2511809805 cites W1981384027 @default.
- W2511809805 cites W1982394177 @default.
- W2511809805 cites W1986222525 @default.
- W2511809805 cites W1988869079 @default.
- W2511809805 cites W1991219656 @default.
- W2511809805 cites W1995809559 @default.
- W2511809805 cites W1996778989 @default.
- W2511809805 cites W1999404882 @default.
- W2511809805 cites W2000917236 @default.
- W2511809805 cites W2008317504 @default.
- W2511809805 cites W2011433502 @default.
- W2511809805 cites W2013206718 @default.
- W2511809805 cites W2016414084 @default.
- W2511809805 cites W2018798207 @default.
- W2511809805 cites W2021244694 @default.
- W2511809805 cites W2027792124 @default.
- W2511809805 cites W2028770252 @default.
- W2511809805 cites W2030096869 @default.
- W2511809805 cites W2033330070 @default.
- W2511809805 cites W2035034575 @default.
- W2511809805 cites W2036170861 @default.
- W2511809805 cites W2037539569 @default.
- W2511809805 cites W2042055542 @default.
- W2511809805 cites W2045649013 @default.
- W2511809805 cites W2046168155 @default.
- W2511809805 cites W2048447200 @default.
- W2511809805 cites W2053528775 @default.
- W2511809805 cites W2056760934 @default.
- W2511809805 cites W2057563627 @default.
- W2511809805 cites W2060953054 @default.
- W2511809805 cites W2061254200 @default.
- W2511809805 cites W2062352464 @default.
- W2511809805 cites W2064482200 @default.
- W2511809805 cites W2065026393 @default.
- W2511809805 cites W2065692779 @default.
- W2511809805 cites W2066051776 @default.
- W2511809805 cites W2067175118 @default.
- W2511809805 cites W2069586592 @default.
- W2511809805 cites W2070502768 @default.
- W2511809805 cites W2070666982 @default.
- W2511809805 cites W2073058492 @default.
- W2511809805 cites W2074821535 @default.
- W2511809805 cites W2077393457 @default.
- W2511809805 cites W2080730937 @default.
- W2511809805 cites W2080846398 @default.
- W2511809805 cites W2081886483 @default.
- W2511809805 cites W2085168231 @default.
- W2511809805 cites W2087670975 @default.
- W2511809805 cites W2099098882 @default.
- W2511809805 cites W2101936997 @default.
- W2511809805 cites W2112940941 @default.
- W2511809805 cites W2133200684 @default.
- W2511809805 cites W2138345354 @default.
- W2511809805 cites W2147049669 @default.
- W2511809805 cites W2164432975 @default.
- W2511809805 cites W2316989408 @default.
- W2511809805 cites W2317586084 @default.
- W2511809805 cites W2317914249 @default.
- W2511809805 cites W2327303208 @default.
- W2511809805 cites W2332036014 @default.
- W2511809805 cites W2386497032 @default.
- W2511809805 cites W2425418610 @default.
- W2511809805 cites W3022043600 @default.
- W2511809805 cites W3022859819 @default.
- W2511809805 cites W3098333618 @default.
- W2511809805 cites W3098428593 @default.
- W2511809805 cites W3100511488 @default.
- W2511809805 cites W3100583172 @default.
- W2511809805 cites W3100904598 @default.
- W2511809805 cites W3105643430 @default.
- W2511809805 cites W3121846478 @default.
- W2511809805 cites W3172357874 @default.
- W2511809805 cites W4247477375 @default.
- W2511809805 cites W81584222 @default.
- W2511809805 doi "https://doi.org/10.1103/physreva.94.043627" @default.
- W2511809805 hasPublicationYear "2016" @default.