Matches in SemOpenAlex for { <https://semopenalex.org/work/W2511892808> ?p ?o ?g. }
- W2511892808 abstract "The Random Forest (RF) algorithm for supervised machine learning is an ensemble learning method widely used in science and many other fields. Its popularity has been increasing, but relatively few studies address the parameter selection process: a critical step in model fitting. Due to numerous assertions regarding the performance reliability of the default parameters, many RF models are fit using these values. However there has not yet been a thorough examination of the parameter-sensitivity of RFs in computational genomic studies. We address this gap here. We examined the effects of parameter selection on classification performance using the RF machine learning algorithm on two biological datasets with distinct p/n ratios: sequencing summary statistics (low p/n) and microarray-derived data (high p/n). Here, p, refers to the number of variables and, n, the number of samples. Our findings demonstrate that parameterization is highly correlated with prediction accuracy and variable importance measures (VIMs). Further, we demonstrate that different parameters are critical in tuning different datasets, and that parameter-optimization significantly enhances upon the default parameters. Parameter performance demonstrated wide variability on both low and high p/n data. Therefore, there is significant benefit to be gained by model tuning RFs away from their default parameter settings." @default.
- W2511892808 created "2016-09-16" @default.
- W2511892808 creator A5007657275 @default.
- W2511892808 creator A5076600645 @default.
- W2511892808 date "2016-09-01" @default.
- W2511892808 modified "2023-10-18" @default.
- W2511892808 title "The parameter sensitivity of random forests" @default.
- W2511892808 cites W1491098415 @default.
- W2511892808 cites W1496257230 @default.
- W2511892808 cites W1510850304 @default.
- W2511892808 cites W1520812622 @default.
- W2511892808 cites W1521461865 @default.
- W2511892808 cites W1557411065 @default.
- W2511892808 cites W1586942839 @default.
- W2511892808 cites W1605688901 @default.
- W2511892808 cites W1646358284 @default.
- W2511892808 cites W1651586605 @default.
- W2511892808 cites W1820403671 @default.
- W2511892808 cites W1875061881 @default.
- W2511892808 cites W1882572081 @default.
- W2511892808 cites W1925336368 @default.
- W2511892808 cites W1933386641 @default.
- W2511892808 cites W1952999593 @default.
- W2511892808 cites W1963414467 @default.
- W2511892808 cites W1974166884 @default.
- W2511892808 cites W1980370800 @default.
- W2511892808 cites W1988195734 @default.
- W2511892808 cites W1996031526 @default.
- W2511892808 cites W2006617902 @default.
- W2511892808 cites W2025609751 @default.
- W2511892808 cites W2036957737 @default.
- W2511892808 cites W2044863747 @default.
- W2511892808 cites W2052896743 @default.
- W2511892808 cites W2053198233 @default.
- W2511892808 cites W2058732827 @default.
- W2511892808 cites W2064208261 @default.
- W2511892808 cites W2073738917 @default.
- W2511892808 cites W2078749507 @default.
- W2511892808 cites W2095809779 @default.
- W2511892808 cites W2097936772 @default.
- W2511892808 cites W2098009642 @default.
- W2511892808 cites W2099892456 @default.
- W2511892808 cites W2100080086 @default.
- W2511892808 cites W2100805904 @default.
- W2511892808 cites W2103614420 @default.
- W2511892808 cites W2104240047 @default.
- W2511892808 cites W2109408008 @default.
- W2511892808 cites W2112137243 @default.
- W2511892808 cites W2118978333 @default.
- W2511892808 cites W2119452210 @default.
- W2511892808 cites W2124005542 @default.
- W2511892808 cites W2125248983 @default.
- W2511892808 cites W2131822674 @default.
- W2511892808 cites W2132165198 @default.
- W2511892808 cites W2133138357 @default.
- W2511892808 cites W2134415934 @default.
- W2511892808 cites W2134932622 @default.
- W2511892808 cites W2138690306 @default.
- W2511892808 cites W2140500095 @default.
- W2511892808 cites W2142495011 @default.
- W2511892808 cites W2143426320 @default.
- W2511892808 cites W2145427519 @default.
- W2511892808 cites W2148143831 @default.
- W2511892808 cites W2157593856 @default.
- W2511892808 cites W2159403903 @default.
- W2511892808 cites W2161239367 @default.
- W2511892808 cites W2161336914 @default.
- W2511892808 cites W2173989201 @default.
- W2511892808 cites W2313339984 @default.
- W2511892808 cites W2911964244 @default.
- W2511892808 cites W3106889297 @default.
- W2511892808 cites W4237685485 @default.
- W2511892808 cites W4293171766 @default.
- W2511892808 doi "https://doi.org/10.1186/s12859-016-1228-x" @default.
- W2511892808 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5009551" @default.
- W2511892808 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27586051" @default.
- W2511892808 hasPublicationYear "2016" @default.
- W2511892808 type Work @default.
- W2511892808 sameAs 2511892808 @default.
- W2511892808 citedByCount "91" @default.
- W2511892808 countsByYear W25118928082017 @default.
- W2511892808 countsByYear W25118928082018 @default.
- W2511892808 countsByYear W25118928082019 @default.
- W2511892808 countsByYear W25118928082020 @default.
- W2511892808 countsByYear W25118928082021 @default.
- W2511892808 countsByYear W25118928082022 @default.
- W2511892808 countsByYear W25118928082023 @default.
- W2511892808 crossrefType "journal-article" @default.
- W2511892808 hasAuthorship W2511892808A5007657275 @default.
- W2511892808 hasAuthorship W2511892808A5076600645 @default.
- W2511892808 hasBestOaLocation W25118928081 @default.
- W2511892808 hasConcept C105795698 @default.
- W2511892808 hasConcept C119857082 @default.
- W2511892808 hasConcept C121332964 @default.
- W2511892808 hasConcept C124101348 @default.
- W2511892808 hasConcept C127413603 @default.
- W2511892808 hasConcept C148483581 @default.
- W2511892808 hasConcept C154945302 @default.
- W2511892808 hasConcept C163258240 @default.
- W2511892808 hasConcept C169258074 @default.