Matches in SemOpenAlex for { <https://semopenalex.org/work/W2512157319> ?p ?o ?g. }
- W2512157319 endingPage "79" @default.
- W2512157319 startingPage "69" @default.
- W2512157319 abstract "Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT deployment and the subsequent entrainment by the actual critical discharge at the time of movement (ratio Qmax/Qc). Results show that approximately 50% of tracers moved at Qmax/Qc ≤ 1.2, and that 73% of tracers moved at Qmax/Qc < 1.5. Therefore, about 30% of tracers had to previously experience a discharge substantially greater than the one that actually mobilized them. Also, coarser particles moved at higher Qmax/Qc ratios, suggesting that higher antecedent flows may be needed to destabilize bed clustering. Results on the virtual velocity of the PIT-tagged clasts employed in the field show that the virtual velocity turned out to be highly variable (ranging from 101 to 10− 5 m min− 1) and weakly related to either particle size or flow discharge. However, virtual velocity was well correlated with the highest flow discharge experienced by each tracer normalized by a percentile of the flow duration curve. This evidence further stresses the importance of flow history on sediment entrainment and transport. Finally, the pros and cons of the deployed monitoring technology are discussed." @default.
- W2512157319 created "2016-09-16" @default.
- W2512157319 creator A5020764367 @default.
- W2512157319 creator A5038465994 @default.
- W2512157319 creator A5091092546 @default.
- W2512157319 date "2017-08-01" @default.
- W2512157319 modified "2023-09-30" @default.
- W2512157319 title "Sediment motion and velocity in a glacier-fed stream" @default.
- W2512157319 cites W1492316285 @default.
- W2512157319 cites W1516277013 @default.
- W2512157319 cites W1575701174 @default.
- W2512157319 cites W1596292212 @default.
- W2512157319 cites W1631784209 @default.
- W2512157319 cites W1636709030 @default.
- W2512157319 cites W1804196236 @default.
- W2512157319 cites W1821916621 @default.
- W2512157319 cites W1839694842 @default.
- W2512157319 cites W1898233878 @default.
- W2512157319 cites W1899738479 @default.
- W2512157319 cites W1971307677 @default.
- W2512157319 cites W1975527068 @default.
- W2512157319 cites W1975897420 @default.
- W2512157319 cites W1985333565 @default.
- W2512157319 cites W1988519738 @default.
- W2512157319 cites W1988576677 @default.
- W2512157319 cites W1992326160 @default.
- W2512157319 cites W1995180680 @default.
- W2512157319 cites W1997632392 @default.
- W2512157319 cites W2000052304 @default.
- W2512157319 cites W2001199140 @default.
- W2512157319 cites W2001648515 @default.
- W2512157319 cites W2006759033 @default.
- W2512157319 cites W2022154120 @default.
- W2512157319 cites W2023410506 @default.
- W2512157319 cites W2025187771 @default.
- W2512157319 cites W2026900825 @default.
- W2512157319 cites W2029450472 @default.
- W2512157319 cites W2038241945 @default.
- W2512157319 cites W2048221386 @default.
- W2512157319 cites W2048639355 @default.
- W2512157319 cites W2049134704 @default.
- W2512157319 cites W2061491824 @default.
- W2512157319 cites W2066645607 @default.
- W2512157319 cites W2073539152 @default.
- W2512157319 cites W2075121765 @default.
- W2512157319 cites W2077870330 @default.
- W2512157319 cites W2095054601 @default.
- W2512157319 cites W2100545708 @default.
- W2512157319 cites W2108671576 @default.
- W2512157319 cites W2118754562 @default.
- W2512157319 cites W2120694021 @default.
- W2512157319 cites W2123965978 @default.
- W2512157319 cites W2125467655 @default.
- W2512157319 cites W2131088932 @default.
- W2512157319 cites W2138585978 @default.
- W2512157319 cites W2148776007 @default.
- W2512157319 cites W2169105525 @default.
- W2512157319 cites W2177375870 @default.
- W2512157319 doi "https://doi.org/10.1016/j.geomorph.2016.09.008" @default.
- W2512157319 hasPublicationYear "2017" @default.
- W2512157319 type Work @default.
- W2512157319 sameAs 2512157319 @default.
- W2512157319 citedByCount "23" @default.
- W2512157319 countsByYear W25121573192018 @default.
- W2512157319 countsByYear W25121573192019 @default.
- W2512157319 countsByYear W25121573192020 @default.
- W2512157319 countsByYear W25121573192021 @default.
- W2512157319 countsByYear W25121573192022 @default.
- W2512157319 countsByYear W25121573192023 @default.
- W2512157319 crossrefType "journal-article" @default.
- W2512157319 hasAuthorship W2512157319A5020764367 @default.
- W2512157319 hasAuthorship W2512157319A5038465994 @default.
- W2512157319 hasAuthorship W2512157319A5091092546 @default.
- W2512157319 hasBestOaLocation W25121573192 @default.
- W2512157319 hasConcept C100834320 @default.
- W2512157319 hasConcept C107038049 @default.
- W2512157319 hasConcept C109007969 @default.
- W2512157319 hasConcept C111368507 @default.
- W2512157319 hasConcept C112959462 @default.
- W2512157319 hasConcept C114793014 @default.
- W2512157319 hasConcept C121332964 @default.
- W2512157319 hasConcept C126645576 @default.
- W2512157319 hasConcept C126753816 @default.
- W2512157319 hasConcept C127313418 @default.
- W2512157319 hasConcept C135343436 @default.
- W2512157319 hasConcept C138885662 @default.
- W2512157319 hasConcept C139992725 @default.
- W2512157319 hasConcept C148043351 @default.
- W2512157319 hasConcept C166693061 @default.
- W2512157319 hasConcept C187320778 @default.
- W2512157319 hasConcept C20470049 @default.
- W2512157319 hasConcept C205649164 @default.
- W2512157319 hasConcept C2816523 @default.
- W2512157319 hasConcept C31258907 @default.
- W2512157319 hasConcept C38349280 @default.
- W2512157319 hasConcept C41008148 @default.
- W2512157319 hasConcept C42090638 @default.
- W2512157319 hasConcept C57879066 @default.