Matches in SemOpenAlex for { <https://semopenalex.org/work/W2512428772> ?p ?o ?g. }
- W2512428772 endingPage "250" @default.
- W2512428772 startingPage "236" @default.
- W2512428772 abstract "We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized `adjoint method' based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation." @default.
- W2512428772 created "2016-09-16" @default.
- W2512428772 creator A5003906979 @default.
- W2512428772 creator A5016359425 @default.
- W2512428772 creator A5037494723 @default.
- W2512428772 creator A5043215844 @default.
- W2512428772 creator A5048328162 @default.
- W2512428772 creator A5080243942 @default.
- W2512428772 creator A5089799978 @default.
- W2512428772 date "2017-01-01" @default.
- W2512428772 modified "2023-10-17" @default.
- W2512428772 title "Gradient-Based Optimization for Poroelastic and Viscoelastic MR Elastography" @default.
- W2512428772 cites W175708320 @default.
- W2512428772 cites W1911907250 @default.
- W2512428772 cites W1963847255 @default.
- W2512428772 cites W1969583173 @default.
- W2512428772 cites W1973166496 @default.
- W2512428772 cites W1974915238 @default.
- W2512428772 cites W1976556251 @default.
- W2512428772 cites W1981131286 @default.
- W2512428772 cites W1983902583 @default.
- W2512428772 cites W1985810605 @default.
- W2512428772 cites W1987410341 @default.
- W2512428772 cites W1988849934 @default.
- W2512428772 cites W1988914162 @default.
- W2512428772 cites W1990850630 @default.
- W2512428772 cites W1995234602 @default.
- W2512428772 cites W1996982466 @default.
- W2512428772 cites W2000359198 @default.
- W2512428772 cites W2003413831 @default.
- W2512428772 cites W2005126631 @default.
- W2512428772 cites W2007263008 @default.
- W2512428772 cites W200778384 @default.
- W2512428772 cites W2009565629 @default.
- W2512428772 cites W2017871311 @default.
- W2512428772 cites W2026786928 @default.
- W2512428772 cites W2031795410 @default.
- W2512428772 cites W2032308987 @default.
- W2512428772 cites W2037339586 @default.
- W2512428772 cites W2041813686 @default.
- W2512428772 cites W2043480291 @default.
- W2512428772 cites W2044409618 @default.
- W2512428772 cites W2045968916 @default.
- W2512428772 cites W2049198657 @default.
- W2512428772 cites W2052297223 @default.
- W2512428772 cites W2053994743 @default.
- W2512428772 cites W2054635074 @default.
- W2512428772 cites W2056554708 @default.
- W2512428772 cites W2058839679 @default.
- W2512428772 cites W2070299075 @default.
- W2512428772 cites W2072827343 @default.
- W2512428772 cites W2072836755 @default.
- W2512428772 cites W2074207365 @default.
- W2512428772 cites W2083039650 @default.
- W2512428772 cites W2083610112 @default.
- W2512428772 cites W2087070363 @default.
- W2512428772 cites W2095571280 @default.
- W2512428772 cites W2096764376 @default.
- W2512428772 cites W2099659089 @default.
- W2512428772 cites W2107649622 @default.
- W2512428772 cites W2108560279 @default.
- W2512428772 cites W2111587089 @default.
- W2512428772 cites W2114424556 @default.
- W2512428772 cites W2119597511 @default.
- W2512428772 cites W2121713565 @default.
- W2512428772 cites W2127763259 @default.
- W2512428772 cites W2131158064 @default.
- W2512428772 cites W2131872096 @default.
- W2512428772 cites W2137871080 @default.
- W2512428772 cites W2137924066 @default.
- W2512428772 cites W2141744828 @default.
- W2512428772 cites W2142585504 @default.
- W2512428772 cites W2144719117 @default.
- W2512428772 cites W2145582290 @default.
- W2512428772 cites W2148169334 @default.
- W2512428772 cites W2148571366 @default.
- W2512428772 cites W2161510983 @default.
- W2512428772 cites W2166859770 @default.
- W2512428772 cites W2523383862 @default.
- W2512428772 cites W4251957920 @default.
- W2512428772 doi "https://doi.org/10.1109/tmi.2016.2604568" @default.
- W2512428772 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5256858" @default.
- W2512428772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113575" @default.
- W2512428772 hasPublicationYear "2017" @default.
- W2512428772 type Work @default.
- W2512428772 sameAs 2512428772 @default.
- W2512428772 citedByCount "27" @default.
- W2512428772 countsByYear W25124287722017 @default.
- W2512428772 countsByYear W25124287722018 @default.
- W2512428772 countsByYear W25124287722019 @default.
- W2512428772 countsByYear W25124287722020 @default.
- W2512428772 countsByYear W25124287722021 @default.
- W2512428772 countsByYear W25124287722022 @default.
- W2512428772 countsByYear W25124287722023 @default.
- W2512428772 crossrefType "journal-article" @default.
- W2512428772 hasAuthorship W2512428772A5003906979 @default.
- W2512428772 hasAuthorship W2512428772A5016359425 @default.
- W2512428772 hasAuthorship W2512428772A5037494723 @default.