Matches in SemOpenAlex for { <https://semopenalex.org/work/W2512745079> ?p ?o ?g. }
- W2512745079 endingPage "378" @default.
- W2512745079 startingPage "361" @default.
- W2512745079 abstract "Discriminant analysis (DA) is a well-known dimensionality reduction tool in pattern classification. With enough efficient labeled samples, the optimal projections could be found by maximizing the between-class scatter variance meanwhile minimizing the within-class scatter variance. However, the acquisition of label information is difficult in practice. So, semi-supervised discriminant analysis has attracted much attention in recent years, where both few labeled samples and many unlabeled samples are utilized during learning process. Sparse graph learned by sparse representation contains local structure information about data and is widely employed in dimensionality reduction. In this paper, semi-supervised double sparse graphs (sDSG) based dimensionality reduction is proposed, which considers both the positive and negative structure relationship of data points by using double sparse graphs. Aiming to explore the discriminant information among unlabeled samples, joint k nearest neighbor selection strategy is proposed to select pseudo-labeled samples which contain some precise discriminant information. In the following procedures, the data subset consisting of labeled samples and pseudo-labeled samples are used instead of the original data. Based on two different criterions, two sDSG based discriminant analysis methods are designed and denoted by sDSG-dDA (distance-based DA) and sDSG-rDA (reconstruction-based DA), which also use different strategies to reduce the effect of pseudo-labels’ inaccuracy. Finally, the experimental results both on UCI datasets and hyperspectral images validate the effectiveness and advantage of the proposed methods compared with some classical dimensionality reduction methods." @default.
- W2512745079 created "2016-09-16" @default.
- W2512745079 creator A5002076661 @default.
- W2512745079 creator A5030958990 @default.
- W2512745079 creator A5039562483 @default.
- W2512745079 creator A5050630882 @default.
- W2512745079 creator A5085025467 @default.
- W2512745079 creator A5090052616 @default.
- W2512745079 date "2017-01-01" @default.
- W2512745079 modified "2023-10-16" @default.
- W2512745079 title "Semi-supervised double sparse graphs based discriminant analysis for dimensionality reduction" @default.
- W2512745079 cites W1564277727 @default.
- W2512745079 cites W1904464160 @default.
- W2512745079 cites W1964137886 @default.
- W2512745079 cites W1969204685 @default.
- W2512745079 cites W1998640076 @default.
- W2512745079 cites W2001141328 @default.
- W2512745079 cites W2010379776 @default.
- W2512745079 cites W2012352340 @default.
- W2512745079 cites W2013734059 @default.
- W2512745079 cites W2021006603 @default.
- W2512745079 cites W2023512014 @default.
- W2512745079 cites W2034481920 @default.
- W2512745079 cites W2041657594 @default.
- W2512745079 cites W2046649434 @default.
- W2512745079 cites W2053186076 @default.
- W2512745079 cites W2058514664 @default.
- W2512745079 cites W2061572659 @default.
- W2512745079 cites W2063259753 @default.
- W2512745079 cites W2070127246 @default.
- W2512745079 cites W2073940236 @default.
- W2512745079 cites W2077733625 @default.
- W2512745079 cites W2077776048 @default.
- W2512745079 cites W2080322700 @default.
- W2512745079 cites W2086382762 @default.
- W2512745079 cites W2088349130 @default.
- W2512745079 cites W2089322632 @default.
- W2512745079 cites W2090826137 @default.
- W2512745079 cites W2097308346 @default.
- W2512745079 cites W2097915756 @default.
- W2512745079 cites W2106513083 @default.
- W2512745079 cites W2118435112 @default.
- W2512745079 cites W2129812935 @default.
- W2512745079 cites W2132549764 @default.
- W2512745079 cites W2151599207 @default.
- W2512745079 cites W2157621128 @default.
- W2512745079 cites W2162698522 @default.
- W2512745079 cites W2163584563 @default.
- W2512745079 cites W2166693468 @default.
- W2512745079 cites W2169567041 @default.
- W2512745079 cites W2171898484 @default.
- W2512745079 cites W2171937595 @default.
- W2512745079 cites W3148981562 @default.
- W2512745079 doi "https://doi.org/10.1016/j.patcog.2016.08.010" @default.
- W2512745079 hasPublicationYear "2017" @default.
- W2512745079 type Work @default.
- W2512745079 sameAs 2512745079 @default.
- W2512745079 citedByCount "39" @default.
- W2512745079 countsByYear W25127450792017 @default.
- W2512745079 countsByYear W25127450792018 @default.
- W2512745079 countsByYear W25127450792019 @default.
- W2512745079 countsByYear W25127450792020 @default.
- W2512745079 countsByYear W25127450792021 @default.
- W2512745079 countsByYear W25127450792022 @default.
- W2512745079 countsByYear W25127450792023 @default.
- W2512745079 crossrefType "journal-article" @default.
- W2512745079 hasAuthorship W2512745079A5002076661 @default.
- W2512745079 hasAuthorship W2512745079A5030958990 @default.
- W2512745079 hasAuthorship W2512745079A5039562483 @default.
- W2512745079 hasAuthorship W2512745079A5050630882 @default.
- W2512745079 hasAuthorship W2512745079A5085025467 @default.
- W2512745079 hasAuthorship W2512745079A5090052616 @default.
- W2512745079 hasConcept C104500394 @default.
- W2512745079 hasConcept C111030470 @default.
- W2512745079 hasConcept C111335779 @default.
- W2512745079 hasConcept C119857082 @default.
- W2512745079 hasConcept C124066611 @default.
- W2512745079 hasConcept C132525143 @default.
- W2512745079 hasConcept C153180895 @default.
- W2512745079 hasConcept C154945302 @default.
- W2512745079 hasConcept C159078339 @default.
- W2512745079 hasConcept C2524010 @default.
- W2512745079 hasConcept C33923547 @default.
- W2512745079 hasConcept C41008148 @default.
- W2512745079 hasConcept C69738355 @default.
- W2512745079 hasConcept C70518039 @default.
- W2512745079 hasConcept C78397625 @default.
- W2512745079 hasConcept C80444323 @default.
- W2512745079 hasConceptScore W2512745079C104500394 @default.
- W2512745079 hasConceptScore W2512745079C111030470 @default.
- W2512745079 hasConceptScore W2512745079C111335779 @default.
- W2512745079 hasConceptScore W2512745079C119857082 @default.
- W2512745079 hasConceptScore W2512745079C124066611 @default.
- W2512745079 hasConceptScore W2512745079C132525143 @default.
- W2512745079 hasConceptScore W2512745079C153180895 @default.
- W2512745079 hasConceptScore W2512745079C154945302 @default.
- W2512745079 hasConceptScore W2512745079C159078339 @default.
- W2512745079 hasConceptScore W2512745079C2524010 @default.