Matches in SemOpenAlex for { <https://semopenalex.org/work/W2512886987> ?p ?o ?g. }
- W2512886987 endingPage "64123" @default.
- W2512886987 startingPage "64109" @default.
- W2512886987 abstract "// Olga Karicheva 1 , José Manuel Rodriguez-Vargas 1 , Nadège Wadier 1 , Kathline Martin-Hernandez 1 , Romain Vauchelles 2 , Najat Magroun 1 , Agnès Tissier 3 , Valérie Schreiber 1 , Françoise Dantzer 1 1 Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France 2 Laboratoire de Biophotonique et Pharmacologie, UMR7213, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France 3 EMT and Cancer Cell Plasticity, Laboratoire d’Excellence DevWeCan, Equipe labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, F-69008 Lyon, France Correspondence to: Françoise Dantzer, email: francoise.dantzer@unistra.fr Keywords: Poly(ADP-ribose) polymerase 3 (PARP3), EMT, TGFβ, ROS, stem cells Received: April 01, 2016 Accepted: August 10, 2016 Published: August 26, 2016 ABSTRACT Several members of the Poly(ADP-ribose) polymerase (PARP) family are essential regulators of genome integrity, actively prospected as drug targets for cancer therapy. Among them, PARP3 is well characterized for its functions in double-strand break repair and mitotis. Here we report that PARP3 also plays an integral role in TGFβ and reactive oxygen species (ROS) dependent epithelial-to-mesenchymal transition (EMT) and stem-like cell properties in human mammary epithelial and breast cancer cells. PARP3 expression is higher in breast cancer cells of the mesenchymal phenotype and correlates with the expression of the mesenchymal marker Vimentin while being in inverse correlation with the epithelial marker E-cadherin. Furthermore, PARP3 expression is significantly upregulated during TGFβ-induced EMT in various human epithelial cells. In line with this observation, PARP3 depletion alters TGFβ-dependent EMT of mammary epithelial cells by preventing the induction of the Snail-E-cadherin axis, the dissolution of cell junctions, the acquisition of cell motility and chemoresistance. PARP3 responds to TGFβ-induced ROS to promote a TG2-Snail-E-cadherin axis during EMT. Considering the link between EMT and cancer stem cells, we show that PARP3 promotes stem-like cell properties in mammary epithelial and breast cancer cells by inducing the expression of the stem cell markers SOX2 and OCT4, by increasing the proportion of tumor initiating CD44 high /CD24 low population and the formation of tumor spheroid bodies, and by promoting stem cell self-renewal. These findings point to a novel role of PARP3 in the control of TGFβ-induced EMT and acquisition of stem-like cell features and further motivate efforts to identify PARP3 specific inhibitors." @default.
- W2512886987 created "2016-09-16" @default.
- W2512886987 creator A5010787361 @default.
- W2512886987 creator A5050478735 @default.
- W2512886987 creator A5056398365 @default.
- W2512886987 creator A5056732928 @default.
- W2512886987 creator A5058524108 @default.
- W2512886987 creator A5062033577 @default.
- W2512886987 creator A5071358535 @default.
- W2512886987 creator A5077225947 @default.
- W2512886987 creator A5088107081 @default.
- W2512886987 date "2016-08-26" @default.
- W2512886987 modified "2023-10-17" @default.
- W2512886987 title "PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis" @default.
- W2512886987 cites W1037161726 @default.
- W2512886987 cites W1484220887 @default.
- W2512886987 cites W1760215417 @default.
- W2512886987 cites W1928799475 @default.
- W2512886987 cites W1964081206 @default.
- W2512886987 cites W1965006127 @default.
- W2512886987 cites W1966505038 @default.
- W2512886987 cites W1973123264 @default.
- W2512886987 cites W1973681967 @default.
- W2512886987 cites W1985339653 @default.
- W2512886987 cites W1987001587 @default.
- W2512886987 cites W1991697633 @default.
- W2512886987 cites W1992397774 @default.
- W2512886987 cites W1996376317 @default.
- W2512886987 cites W1996834104 @default.
- W2512886987 cites W2009213090 @default.
- W2512886987 cites W2014035465 @default.
- W2512886987 cites W2014691022 @default.
- W2512886987 cites W2017171454 @default.
- W2512886987 cites W2017215338 @default.
- W2512886987 cites W2017460694 @default.
- W2512886987 cites W2028593825 @default.
- W2512886987 cites W2031913686 @default.
- W2512886987 cites W2035849143 @default.
- W2512886987 cites W2038390742 @default.
- W2512886987 cites W2039855253 @default.
- W2512886987 cites W2047992261 @default.
- W2512886987 cites W2063714301 @default.
- W2512886987 cites W2063883710 @default.
- W2512886987 cites W2072709416 @default.
- W2512886987 cites W2075410218 @default.
- W2512886987 cites W2079891276 @default.
- W2512886987 cites W2080096857 @default.
- W2512886987 cites W2086378628 @default.
- W2512886987 cites W2088106349 @default.
- W2512886987 cites W2088821070 @default.
- W2512886987 cites W2088875346 @default.
- W2512886987 cites W2097831215 @default.
- W2512886987 cites W2118915702 @default.
- W2512886987 cites W2121272379 @default.
- W2512886987 cites W2127617517 @default.
- W2512886987 cites W2128354543 @default.
- W2512886987 cites W2133410935 @default.
- W2512886987 cites W2140551998 @default.
- W2512886987 cites W2142739240 @default.
- W2512886987 cites W2148434747 @default.
- W2512886987 cites W2150270122 @default.
- W2512886987 cites W2150645494 @default.
- W2512886987 cites W2155626821 @default.
- W2512886987 cites W2156734818 @default.
- W2512886987 cites W2163294504 @default.
- W2512886987 cites W2166782237 @default.
- W2512886987 cites W2168388492 @default.
- W2512886987 cites W2173456459 @default.
- W2512886987 cites W2258777114 @default.
- W2512886987 doi "https://doi.org/10.18632/oncotarget.11627" @default.
- W2512886987 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5325429" @default.
- W2512886987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27579892" @default.
- W2512886987 hasPublicationYear "2016" @default.
- W2512886987 type Work @default.
- W2512886987 sameAs 2512886987 @default.
- W2512886987 citedByCount "65" @default.
- W2512886987 countsByYear W25128869872017 @default.
- W2512886987 countsByYear W25128869872018 @default.
- W2512886987 countsByYear W25128869872019 @default.
- W2512886987 countsByYear W25128869872020 @default.
- W2512886987 countsByYear W25128869872021 @default.
- W2512886987 countsByYear W25128869872022 @default.
- W2512886987 countsByYear W25128869872023 @default.
- W2512886987 crossrefType "journal-article" @default.
- W2512886987 hasAuthorship W2512886987A5010787361 @default.
- W2512886987 hasAuthorship W2512886987A5050478735 @default.
- W2512886987 hasAuthorship W2512886987A5056398365 @default.
- W2512886987 hasAuthorship W2512886987A5056732928 @default.
- W2512886987 hasAuthorship W2512886987A5058524108 @default.
- W2512886987 hasAuthorship W2512886987A5062033577 @default.
- W2512886987 hasAuthorship W2512886987A5071358535 @default.
- W2512886987 hasAuthorship W2512886987A5077225947 @default.
- W2512886987 hasAuthorship W2512886987A5088107081 @default.
- W2512886987 hasBestOaLocation W25128869871 @default.
- W2512886987 hasConcept C121608353 @default.
- W2512886987 hasConcept C173396325 @default.
- W2512886987 hasConcept C2779013556 @default.
- W2512886987 hasConcept C502942594 @default.