Matches in SemOpenAlex for { <https://semopenalex.org/work/W2512987981> ?p ?o ?g. }
- W2512987981 endingPage "256" @default.
- W2512987981 startingPage "241" @default.
- W2512987981 abstract "The modelling of solar irradiation in concentrated solar power (CSP) applications is traditionally done with ray-tracing methods, e.g. the Monte Carlo method. For the evaluation of CSP receivers, the results from ray-tracing codes are typically used to provide boundary conditions to Computational Fluid Dynamics (CFD) codes for the solution of conjugate heat transfer in the receivers. There are both advantages and disadvantages to using separate software for the irradiation and heat transfer modelling. For traditional ray-tracing methods, advantages are the cost-effectiveness of the Monte Carlo method in modelling reflections from specular surfaces; the ability to statistically assign a sun shape to the rays; the statistical treatment of reflectivity and optical errors (e.g. surface slope errors), to name a few. When considering a complex mirror field and a complex receiver with secondary reflective surfaces, especially with selective coatings to enhance absorption and limit re-radiation losses, standard ray tracers may be limited in specifying emissivity and absorptivity, which are both specular and temperature dependent, and are hence not suitable as radiation analysis tool. This type of scenario can be modelled accurately using CFD, through the finite volume (FV) treatment of the radiative transfer equation (RTE) and a banded spectrum approach at an increased computational cost. This paper evaluates the use of CFD in the form of the commercial CFD code ANSYS Fluent v15 and v16 to model the reflection, transmission and absorption of solar irradiation from diffuse and specular surfaces found in linear CSP applications. 2-D CFD solutions were considered, i.e. line concentration. To illustrate and validate the method, two sources were used. The first source was test cases from literature with published solutions and the second a combined modelling approach where solutions were obtained using both FV and ray tracing (with SolTrace). For all the test cases, good agreement was found when suitable modelling settings were used to limit both ray-effect and false scattering errors." @default.
- W2512987981 created "2016-09-16" @default.
- W2512987981 creator A5015319272 @default.
- W2512987981 creator A5021429493 @default.
- W2512987981 creator A5054758655 @default.
- W2512987981 creator A5068436949 @default.
- W2512987981 creator A5075186804 @default.
- W2512987981 date "2016-12-01" @default.
- W2512987981 modified "2023-10-01" @default.
- W2512987981 title "Finite-volume ray tracing using Computational Fluid Dynamics in linear focus CSP applications" @default.
- W2512987981 cites W1043770325 @default.
- W2512987981 cites W1520263288 @default.
- W2512987981 cites W1803690640 @default.
- W2512987981 cites W1968673742 @default.
- W2512987981 cites W1974813999 @default.
- W2512987981 cites W1980743290 @default.
- W2512987981 cites W1996427398 @default.
- W2512987981 cites W2012273177 @default.
- W2512987981 cites W2015341569 @default.
- W2512987981 cites W2017129447 @default.
- W2512987981 cites W2017263023 @default.
- W2512987981 cites W2019384967 @default.
- W2512987981 cites W2024416429 @default.
- W2512987981 cites W2027230217 @default.
- W2512987981 cites W2036754707 @default.
- W2512987981 cites W2037454249 @default.
- W2512987981 cites W2046449985 @default.
- W2512987981 cites W2057099635 @default.
- W2512987981 cites W2059079247 @default.
- W2512987981 cites W2067793023 @default.
- W2512987981 cites W2081373060 @default.
- W2512987981 cites W2086449010 @default.
- W2512987981 cites W2110677730 @default.
- W2512987981 cites W2128040758 @default.
- W2512987981 cites W2144040783 @default.
- W2512987981 cites W2146350817 @default.
- W2512987981 cites W2164435765 @default.
- W2512987981 cites W2168440825 @default.
- W2512987981 cites W2168983494 @default.
- W2512987981 cites W2173788242 @default.
- W2512987981 cites W2203447527 @default.
- W2512987981 cites W2561644769 @default.
- W2512987981 cites W319413555 @default.
- W2512987981 doi "https://doi.org/10.1016/j.apenergy.2016.08.154" @default.
- W2512987981 hasPublicationYear "2016" @default.
- W2512987981 type Work @default.
- W2512987981 sameAs 2512987981 @default.
- W2512987981 citedByCount "34" @default.
- W2512987981 countsByYear W25129879812017 @default.
- W2512987981 countsByYear W25129879812018 @default.
- W2512987981 countsByYear W25129879812019 @default.
- W2512987981 countsByYear W25129879812020 @default.
- W2512987981 countsByYear W25129879812021 @default.
- W2512987981 countsByYear W25129879812022 @default.
- W2512987981 countsByYear W25129879812023 @default.
- W2512987981 crossrefType "journal-article" @default.
- W2512987981 hasAuthorship W2512987981A5015319272 @default.
- W2512987981 hasAuthorship W2512987981A5021429493 @default.
- W2512987981 hasAuthorship W2512987981A5054758655 @default.
- W2512987981 hasAuthorship W2512987981A5068436949 @default.
- W2512987981 hasAuthorship W2512987981A5075186804 @default.
- W2512987981 hasBestOaLocation W25129879812 @default.
- W2512987981 hasConcept C105795698 @default.
- W2512987981 hasConcept C118381688 @default.
- W2512987981 hasConcept C119599485 @default.
- W2512987981 hasConcept C120665830 @default.
- W2512987981 hasConcept C121332964 @default.
- W2512987981 hasConcept C121483023 @default.
- W2512987981 hasConcept C127413603 @default.
- W2512987981 hasConcept C1633027 @default.
- W2512987981 hasConcept C163651212 @default.
- W2512987981 hasConcept C19499675 @default.
- W2512987981 hasConcept C2779473208 @default.
- W2512987981 hasConcept C2780411076 @default.
- W2512987981 hasConcept C30475298 @default.
- W2512987981 hasConcept C33923547 @default.
- W2512987981 hasConcept C41008148 @default.
- W2512987981 hasConcept C44154836 @default.
- W2512987981 hasConcept C50517652 @default.
- W2512987981 hasConcept C541104983 @default.
- W2512987981 hasConcept C57879066 @default.
- W2512987981 hasConcept C74902906 @default.
- W2512987981 hasConcept C82744980 @default.
- W2512987981 hasConceptScore W2512987981C105795698 @default.
- W2512987981 hasConceptScore W2512987981C118381688 @default.
- W2512987981 hasConceptScore W2512987981C119599485 @default.
- W2512987981 hasConceptScore W2512987981C120665830 @default.
- W2512987981 hasConceptScore W2512987981C121332964 @default.
- W2512987981 hasConceptScore W2512987981C121483023 @default.
- W2512987981 hasConceptScore W2512987981C127413603 @default.
- W2512987981 hasConceptScore W2512987981C1633027 @default.
- W2512987981 hasConceptScore W2512987981C163651212 @default.
- W2512987981 hasConceptScore W2512987981C19499675 @default.
- W2512987981 hasConceptScore W2512987981C2779473208 @default.
- W2512987981 hasConceptScore W2512987981C2780411076 @default.
- W2512987981 hasConceptScore W2512987981C30475298 @default.
- W2512987981 hasConceptScore W2512987981C33923547 @default.
- W2512987981 hasConceptScore W2512987981C41008148 @default.