Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513290420> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2513290420 abstract "In traffic monitoring environments where light changes a lot, classifying pedestrians, bikes, motorcycles, and other vehicles quickly is indeed a big challenge. For instance, pedestrians are of variable sizes, bikes of different styles, motorcycles of different shapes, and vehicles of different types. Because of these variations and can influence the classification results for these four categories. Recently, Deep Learning has often been used in object classification with reasonably good results, so interests in researching it for new applications have been aroused. However, Deep Learning is seldom used in researches of classifying pedestrians, bikes, motorcycles, and other vehicles. In this paper, Deep Belief Networks (DBN) of Deep Learning is applied to distinguish the above-mentioned four categories. The proposed DBN methods only used 1,000 image training set and could achieve a higher accuracy of classification rate." @default.
- W2513290420 created "2016-09-16" @default.
- W2513290420 creator A5008250492 @default.
- W2513290420 creator A5033429934 @default.
- W2513290420 date "2016-05-01" @default.
- W2513290420 modified "2023-09-24" @default.
- W2513290420 title "Pedestrian, bike, motorcycle, and vehicle classification via deep learning: Deep belief network and small training set" @default.
- W2513290420 cites W1994943112 @default.
- W2513290420 cites W2041818521 @default.
- W2513290420 cites W2100495367 @default.
- W2513290420 cites W2136288665 @default.
- W2513290420 cites W2136922672 @default.
- W2513290420 cites W2143682047 @default.
- W2513290420 cites W2148078399 @default.
- W2513290420 cites W2158404807 @default.
- W2513290420 cites W2161893161 @default.
- W2513290420 cites W2355494623 @default.
- W2513290420 doi "https://doi.org/10.1109/icasi.2016.7539822" @default.
- W2513290420 hasPublicationYear "2016" @default.
- W2513290420 type Work @default.
- W2513290420 sameAs 2513290420 @default.
- W2513290420 citedByCount "12" @default.
- W2513290420 countsByYear W25132904202017 @default.
- W2513290420 countsByYear W25132904202019 @default.
- W2513290420 countsByYear W25132904202020 @default.
- W2513290420 countsByYear W25132904202023 @default.
- W2513290420 crossrefType "proceedings-article" @default.
- W2513290420 hasAuthorship W2513290420A5008250492 @default.
- W2513290420 hasAuthorship W2513290420A5033429934 @default.
- W2513290420 hasConcept C108583219 @default.
- W2513290420 hasConcept C115961682 @default.
- W2513290420 hasConcept C119857082 @default.
- W2513290420 hasConcept C127413603 @default.
- W2513290420 hasConcept C153180895 @default.
- W2513290420 hasConcept C153294291 @default.
- W2513290420 hasConcept C154945302 @default.
- W2513290420 hasConcept C177264268 @default.
- W2513290420 hasConcept C199360897 @default.
- W2513290420 hasConcept C205649164 @default.
- W2513290420 hasConcept C22212356 @default.
- W2513290420 hasConcept C2776151529 @default.
- W2513290420 hasConcept C2777113093 @default.
- W2513290420 hasConcept C2777211547 @default.
- W2513290420 hasConcept C41008148 @default.
- W2513290420 hasConcept C51632099 @default.
- W2513290420 hasConcept C75294576 @default.
- W2513290420 hasConcept C97385483 @default.
- W2513290420 hasConceptScore W2513290420C108583219 @default.
- W2513290420 hasConceptScore W2513290420C115961682 @default.
- W2513290420 hasConceptScore W2513290420C119857082 @default.
- W2513290420 hasConceptScore W2513290420C127413603 @default.
- W2513290420 hasConceptScore W2513290420C153180895 @default.
- W2513290420 hasConceptScore W2513290420C153294291 @default.
- W2513290420 hasConceptScore W2513290420C154945302 @default.
- W2513290420 hasConceptScore W2513290420C177264268 @default.
- W2513290420 hasConceptScore W2513290420C199360897 @default.
- W2513290420 hasConceptScore W2513290420C205649164 @default.
- W2513290420 hasConceptScore W2513290420C22212356 @default.
- W2513290420 hasConceptScore W2513290420C2776151529 @default.
- W2513290420 hasConceptScore W2513290420C2777113093 @default.
- W2513290420 hasConceptScore W2513290420C2777211547 @default.
- W2513290420 hasConceptScore W2513290420C41008148 @default.
- W2513290420 hasConceptScore W2513290420C51632099 @default.
- W2513290420 hasConceptScore W2513290420C75294576 @default.
- W2513290420 hasConceptScore W2513290420C97385483 @default.
- W2513290420 hasLocation W25132904201 @default.
- W2513290420 hasOpenAccess W2513290420 @default.
- W2513290420 hasPrimaryLocation W25132904201 @default.
- W2513290420 hasRelatedWork W1573197951 @default.
- W2513290420 hasRelatedWork W1938425378 @default.
- W2513290420 hasRelatedWork W1978946456 @default.
- W2513290420 hasRelatedWork W2076387525 @default.
- W2513290420 hasRelatedWork W2412771486 @default.
- W2513290420 hasRelatedWork W2512969578 @default.
- W2513290420 hasRelatedWork W2609578701 @default.
- W2513290420 hasRelatedWork W2738081739 @default.
- W2513290420 hasRelatedWork W2794826941 @default.
- W2513290420 hasRelatedWork W2885297021 @default.
- W2513290420 hasRelatedWork W2955038170 @default.
- W2513290420 hasRelatedWork W3009117372 @default.
- W2513290420 hasRelatedWork W3014654539 @default.
- W2513290420 hasRelatedWork W3107020145 @default.
- W2513290420 hasRelatedWork W3126601769 @default.
- W2513290420 hasRelatedWork W3158501847 @default.
- W2513290420 hasRelatedWork W3183127282 @default.
- W2513290420 hasRelatedWork W3186155039 @default.
- W2513290420 hasRelatedWork W3205483739 @default.
- W2513290420 hasRelatedWork W3212157882 @default.
- W2513290420 isParatext "false" @default.
- W2513290420 isRetracted "false" @default.
- W2513290420 magId "2513290420" @default.
- W2513290420 workType "article" @default.