Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513302415> ?p ?o ?g. }
- W2513302415 endingPage "319" @default.
- W2513302415 startingPage "307" @default.
- W2513302415 abstract "Empirical mode decomposition (EMD) has emerged as a powerful tool for signal/image processing. However, extending the EMD to its three-dimensional (3D) version remains a challenging task due to the enormous computational effort. In this paper, we propose a fast 3D EMD (TEMD) to decompose a volume into several 3D intrinsic mode functions (TIMFs). Two strategies are introduced to accelerate the TEMD. On the one hand, the distances among extrema, which can be used to identify the filter sizes, are effectively calculated by 3D Delaunay triangulation (DT). On the other hand, separable filters are adopted to generate the envelopes. Rather than performing a 3D filter, we separately apply a one-dimensional (1D) filter three times to obtain the same results with much less computational requirements. Simulation results demonstrate that the proposed TEMD method significantly speeds up the calculation and yields improved decomposition performance on synthetic and real world data." @default.
- W2513302415 created "2016-09-16" @default.
- W2513302415 creator A5009129294 @default.
- W2513302415 creator A5028584961 @default.
- W2513302415 creator A5084914649 @default.
- W2513302415 creator A5088676468 @default.
- W2513302415 date "2017-02-01" @default.
- W2513302415 modified "2023-10-17" @default.
- W2513302415 title "Three-dimensional empirical mode decomposition (TEMD): A fast approach motivated by separable filters" @default.
- W2513302415 cites W1217776722 @default.
- W2513302415 cites W1710409501 @default.
- W2513302415 cites W1974102168 @default.
- W2513302415 cites W1976836781 @default.
- W2513302415 cites W1979078563 @default.
- W2513302415 cites W2001612033 @default.
- W2513302415 cites W2006816478 @default.
- W2513302415 cites W2007221293 @default.
- W2513302415 cites W2011557183 @default.
- W2513302415 cites W2022964910 @default.
- W2513302415 cites W2025538567 @default.
- W2513302415 cites W2042145419 @default.
- W2513302415 cites W2064340692 @default.
- W2513302415 cites W2072282987 @default.
- W2513302415 cites W2076892018 @default.
- W2513302415 cites W2079867385 @default.
- W2513302415 cites W2088202114 @default.
- W2513302415 cites W2090763911 @default.
- W2513302415 cites W2092169156 @default.
- W2513302415 cites W2120390927 @default.
- W2513302415 cites W2122470043 @default.
- W2513302415 cites W2134509496 @default.
- W2513302415 cites W2135619855 @default.
- W2513302415 cites W2142041455 @default.
- W2513302415 cites W2155658307 @default.
- W2513302415 cites W2160924754 @default.
- W2513302415 cites W2166163522 @default.
- W2513302415 cites W2170044118 @default.
- W2513302415 cites W2170052274 @default.
- W2513302415 cites W2228225750 @default.
- W2513302415 cites W2264064133 @default.
- W2513302415 cites W2279226435 @default.
- W2513302415 cites W2321143615 @default.
- W2513302415 cites W4376849658 @default.
- W2513302415 cites W882422999 @default.
- W2513302415 cites W3141408015 @default.
- W2513302415 doi "https://doi.org/10.1016/j.sigpro.2016.08.024" @default.
- W2513302415 hasPublicationYear "2017" @default.
- W2513302415 type Work @default.
- W2513302415 sameAs 2513302415 @default.
- W2513302415 citedByCount "20" @default.
- W2513302415 countsByYear W25133024152018 @default.
- W2513302415 countsByYear W25133024152019 @default.
- W2513302415 countsByYear W25133024152020 @default.
- W2513302415 countsByYear W25133024152021 @default.
- W2513302415 countsByYear W25133024152022 @default.
- W2513302415 countsByYear W25133024152023 @default.
- W2513302415 crossrefType "journal-article" @default.
- W2513302415 hasAuthorship W2513302415A5009129294 @default.
- W2513302415 hasAuthorship W2513302415A5028584961 @default.
- W2513302415 hasAuthorship W2513302415A5084914649 @default.
- W2513302415 hasAuthorship W2513302415A5088676468 @default.
- W2513302415 hasConcept C104267543 @default.
- W2513302415 hasConcept C106131492 @default.
- W2513302415 hasConcept C111919701 @default.
- W2513302415 hasConcept C11413529 @default.
- W2513302415 hasConcept C124681953 @default.
- W2513302415 hasConcept C134306372 @default.
- W2513302415 hasConcept C154945302 @default.
- W2513302415 hasConcept C186633575 @default.
- W2513302415 hasConcept C18903297 @default.
- W2513302415 hasConcept C25570617 @default.
- W2513302415 hasConcept C31972630 @default.
- W2513302415 hasConcept C33923547 @default.
- W2513302415 hasConcept C41008148 @default.
- W2513302415 hasConcept C48677424 @default.
- W2513302415 hasConcept C68010082 @default.
- W2513302415 hasConcept C70710897 @default.
- W2513302415 hasConcept C84462506 @default.
- W2513302415 hasConcept C86803240 @default.
- W2513302415 hasConcept C9390403 @default.
- W2513302415 hasConceptScore W2513302415C104267543 @default.
- W2513302415 hasConceptScore W2513302415C106131492 @default.
- W2513302415 hasConceptScore W2513302415C111919701 @default.
- W2513302415 hasConceptScore W2513302415C11413529 @default.
- W2513302415 hasConceptScore W2513302415C124681953 @default.
- W2513302415 hasConceptScore W2513302415C134306372 @default.
- W2513302415 hasConceptScore W2513302415C154945302 @default.
- W2513302415 hasConceptScore W2513302415C186633575 @default.
- W2513302415 hasConceptScore W2513302415C18903297 @default.
- W2513302415 hasConceptScore W2513302415C25570617 @default.
- W2513302415 hasConceptScore W2513302415C31972630 @default.
- W2513302415 hasConceptScore W2513302415C33923547 @default.
- W2513302415 hasConceptScore W2513302415C41008148 @default.
- W2513302415 hasConceptScore W2513302415C48677424 @default.
- W2513302415 hasConceptScore W2513302415C68010082 @default.
- W2513302415 hasConceptScore W2513302415C70710897 @default.
- W2513302415 hasConceptScore W2513302415C84462506 @default.
- W2513302415 hasConceptScore W2513302415C86803240 @default.