Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513306670> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2513306670 abstract "Acrucial practical advantage of infectious diseases modelling as a public health tool lies in its application to evaluate various disease-control policies. However, such evaluation is of limited use, unless a sufficiently accurate epidemic model is applied. If the model provides an adequate fit, it is possible to interpret parameter estimates, compare disease epidemics and implement control procedures. Methods to assess and compare stochastic epidemic models in a Bayesian framework are not well-established, particularly in epidemic settings with missing data.In this thesis, we develop novel methods for both model adequacy and model choice for stochastic epidemic models. We work with continuous time epidemic models and assume that only case detection times of infected individuals are available, corresponding to removal times. Throughout, we illustrate our methods using both simulated outbreak data and real disease data. Data augmented Markov Chain Monte Carlo (MCMC) algorithms are employed to make inference for unobserved infection times and model parameters.Under a Bayesian framework, we first conduct a systematic investigation of three different but natural methods of model adequacy for SIR (Susceptible-Infective-Removed) epidemic models.We proceed to develop a new two-stage method for assessing the adequacy of epidemic models. In this two stage method, two predictive distributions are examined, namely the predictive distribution of the final size of the epidemic and the predictive distribution of the removal times. The idea is based onlooking explicitly at the discrepancy between the observed and predicted removal times using the posterior predictive model checking approach in which the notion of Bayesian residuals and the and the posterior predictive p−value are utilized. This approach differs, most importantly, from classical likelihood-based approaches by taking into account uncertainty in both model stochasticity and model parameters. The two-stage method explores how SIR models with different infection mechanisms, infectious periods and population structures can be assessed and distinguished given only a set of removal times. In the last part of this thesis, we consider Bayesian model choice methods for epidemic models. We derive explicit forms for Bayes factors in two different epidemic settings, given complete epidemic data. Additionally, in the setting where the available data are partially observed, we extend the existing power posterior method for estimating Bayes factors to models incorporating missing data and successfully apply our missing-data extension of the power posterior method to various epidemic settings. We further consider the performance of the deviance information criterion (DIC) method to select between epidemic models." @default.
- W2513306670 created "2016-09-16" @default.
- W2513306670 creator A5016361431 @default.
- W2513306670 date "2016-07-21" @default.
- W2513306670 modified "2023-09-24" @default.
- W2513306670 title "Bayesian model assessment for stochastic epidemic models" @default.
- W2513306670 hasPublicationYear "2016" @default.
- W2513306670 type Work @default.
- W2513306670 sameAs 2513306670 @default.
- W2513306670 citedByCount "0" @default.
- W2513306670 crossrefType "dissertation" @default.
- W2513306670 hasAuthorship W2513306670A5016361431 @default.
- W2513306670 hasConcept C105795698 @default.
- W2513306670 hasConcept C107673813 @default.
- W2513306670 hasConcept C111350023 @default.
- W2513306670 hasConcept C119857082 @default.
- W2513306670 hasConcept C124101348 @default.
- W2513306670 hasConcept C127491075 @default.
- W2513306670 hasConcept C149782125 @default.
- W2513306670 hasConcept C154945302 @default.
- W2513306670 hasConcept C160234255 @default.
- W2513306670 hasConcept C1627819 @default.
- W2513306670 hasConcept C2776214188 @default.
- W2513306670 hasConcept C2908647359 @default.
- W2513306670 hasConcept C33923547 @default.
- W2513306670 hasConcept C41008148 @default.
- W2513306670 hasConcept C57830394 @default.
- W2513306670 hasConcept C71924100 @default.
- W2513306670 hasConcept C99454951 @default.
- W2513306670 hasConceptScore W2513306670C105795698 @default.
- W2513306670 hasConceptScore W2513306670C107673813 @default.
- W2513306670 hasConceptScore W2513306670C111350023 @default.
- W2513306670 hasConceptScore W2513306670C119857082 @default.
- W2513306670 hasConceptScore W2513306670C124101348 @default.
- W2513306670 hasConceptScore W2513306670C127491075 @default.
- W2513306670 hasConceptScore W2513306670C149782125 @default.
- W2513306670 hasConceptScore W2513306670C154945302 @default.
- W2513306670 hasConceptScore W2513306670C160234255 @default.
- W2513306670 hasConceptScore W2513306670C1627819 @default.
- W2513306670 hasConceptScore W2513306670C2776214188 @default.
- W2513306670 hasConceptScore W2513306670C2908647359 @default.
- W2513306670 hasConceptScore W2513306670C33923547 @default.
- W2513306670 hasConceptScore W2513306670C41008148 @default.
- W2513306670 hasConceptScore W2513306670C57830394 @default.
- W2513306670 hasConceptScore W2513306670C71924100 @default.
- W2513306670 hasConceptScore W2513306670C99454951 @default.
- W2513306670 hasLocation W25133066701 @default.
- W2513306670 hasOpenAccess W2513306670 @default.
- W2513306670 hasPrimaryLocation W25133066701 @default.
- W2513306670 hasRelatedWork W1749900216 @default.
- W2513306670 hasRelatedWork W2022666622 @default.
- W2513306670 hasRelatedWork W2024963973 @default.
- W2513306670 hasRelatedWork W2028345437 @default.
- W2513306670 hasRelatedWork W2065570119 @default.
- W2513306670 hasRelatedWork W2078503251 @default.
- W2513306670 hasRelatedWork W2113581283 @default.
- W2513306670 hasRelatedWork W2113718755 @default.
- W2513306670 hasRelatedWork W2125450142 @default.
- W2513306670 hasRelatedWork W2139004974 @default.
- W2513306670 hasRelatedWork W2146252062 @default.
- W2513306670 hasRelatedWork W2152066224 @default.
- W2513306670 hasRelatedWork W2170106032 @default.
- W2513306670 hasRelatedWork W2903751790 @default.
- W2513306670 hasRelatedWork W2937640677 @default.
- W2513306670 hasRelatedWork W2963581736 @default.
- W2513306670 hasRelatedWork W2978643771 @default.
- W2513306670 hasRelatedWork W3173266174 @default.
- W2513306670 hasRelatedWork W3197643651 @default.
- W2513306670 hasRelatedWork W3200775758 @default.
- W2513306670 isParatext "false" @default.
- W2513306670 isRetracted "false" @default.
- W2513306670 magId "2513306670" @default.
- W2513306670 workType "dissertation" @default.