Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513650310> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2513650310 endingPage "117" @default.
- W2513650310 startingPage "108" @default.
- W2513650310 abstract "This work examines the application of M5 model tree and conventionally used fixed/random effect negative binomial (FENB/RENB) regression models for accident prediction on non-urban sections of highway in Haryana (India). Road accident data for a period of 2-6 years on different sections of 8 National and State Highways in Haryana was collected from police records. Data related to road geometry, traffic and road environment related variables was collected through field studies. Total two hundred and twenty two data points were gathered by dividing highways into sections with certain uniform geometric characteristics. For prediction of accident frequencies using fifteen input parameters, two modeling approaches: FENB/RENB regression and M5 model tree were used. Results suggest that both models perform comparably well in terms of correlation coefficient and root mean square error values. M5 model tree provides simple linear equations that are easy to interpret and provide better insight, indicating that this approach can effectively be used as an alternative to RENB approach if the sole purpose is to predict motor vehicle crashes. Sensitivity analysis using M5 model tree also suggests that its results reflect the physical conditions. Both models clearly indicate that to improve safety on Indian highways minor accesses to the highways need to be properly designed and controlled, the service roads to be made functional and dispersion of speeds is to be brought down." @default.
- W2513650310 created "2016-09-16" @default.
- W2513650310 creator A5046423804 @default.
- W2513650310 creator A5072773675 @default.
- W2513650310 creator A5085702695 @default.
- W2513650310 date "2016-11-01" @default.
- W2513650310 modified "2023-10-16" @default.
- W2513650310 title "M5 model tree based predictive modeling of road accidents on non-urban sections of highways in India" @default.
- W2513650310 cites W1980399291 @default.
- W2513650310 cites W1981177109 @default.
- W2513650310 cites W2001351843 @default.
- W2513650310 cites W2005961250 @default.
- W2513650310 cites W2006868542 @default.
- W2513650310 cites W2036619968 @default.
- W2513650310 cites W2044657894 @default.
- W2513650310 cites W2053409354 @default.
- W2513650310 cites W2058291794 @default.
- W2513650310 cites W2060817938 @default.
- W2513650310 cites W2061637117 @default.
- W2513650310 cites W2064986432 @default.
- W2513650310 cites W2066816378 @default.
- W2513650310 cites W2080911646 @default.
- W2513650310 cites W2085198875 @default.
- W2513650310 cites W2088341448 @default.
- W2513650310 cites W2089308512 @default.
- W2513650310 cites W2093178829 @default.
- W2513650310 cites W2101391093 @default.
- W2513650310 cites W2114856138 @default.
- W2513650310 cites W2115855457 @default.
- W2513650310 cites W2132735659 @default.
- W2513650310 cites W2137513973 @default.
- W2513650310 cites W2150039188 @default.
- W2513650310 doi "https://doi.org/10.1016/j.aap.2016.08.004" @default.
- W2513650310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27521904" @default.
- W2513650310 hasPublicationYear "2016" @default.
- W2513650310 type Work @default.
- W2513650310 sameAs 2513650310 @default.
- W2513650310 citedByCount "41" @default.
- W2513650310 countsByYear W25136503102017 @default.
- W2513650310 countsByYear W25136503102018 @default.
- W2513650310 countsByYear W25136503102019 @default.
- W2513650310 countsByYear W25136503102020 @default.
- W2513650310 countsByYear W25136503102021 @default.
- W2513650310 countsByYear W25136503102022 @default.
- W2513650310 countsByYear W25136503102023 @default.
- W2513650310 crossrefType "journal-article" @default.
- W2513650310 hasAuthorship W2513650310A5046423804 @default.
- W2513650310 hasAuthorship W2513650310A5072773675 @default.
- W2513650310 hasAuthorship W2513650310A5085702695 @default.
- W2513650310 hasConcept C100906024 @default.
- W2513650310 hasConcept C105795698 @default.
- W2513650310 hasConcept C113174947 @default.
- W2513650310 hasConcept C127413603 @default.
- W2513650310 hasConcept C134306372 @default.
- W2513650310 hasConcept C139945424 @default.
- W2513650310 hasConcept C152877465 @default.
- W2513650310 hasConcept C199335787 @default.
- W2513650310 hasConcept C22212356 @default.
- W2513650310 hasConcept C33923547 @default.
- W2513650310 hasConcept C40319758 @default.
- W2513650310 hasConcept C45804977 @default.
- W2513650310 hasConceptScore W2513650310C100906024 @default.
- W2513650310 hasConceptScore W2513650310C105795698 @default.
- W2513650310 hasConceptScore W2513650310C113174947 @default.
- W2513650310 hasConceptScore W2513650310C127413603 @default.
- W2513650310 hasConceptScore W2513650310C134306372 @default.
- W2513650310 hasConceptScore W2513650310C139945424 @default.
- W2513650310 hasConceptScore W2513650310C152877465 @default.
- W2513650310 hasConceptScore W2513650310C199335787 @default.
- W2513650310 hasConceptScore W2513650310C22212356 @default.
- W2513650310 hasConceptScore W2513650310C33923547 @default.
- W2513650310 hasConceptScore W2513650310C40319758 @default.
- W2513650310 hasConceptScore W2513650310C45804977 @default.
- W2513650310 hasLocation W25136503101 @default.
- W2513650310 hasLocation W25136503102 @default.
- W2513650310 hasOpenAccess W2513650310 @default.
- W2513650310 hasPrimaryLocation W25136503101 @default.
- W2513650310 hasRelatedWork W180118890 @default.
- W2513650310 hasRelatedWork W2041256494 @default.
- W2513650310 hasRelatedWork W2159796125 @default.
- W2513650310 hasRelatedWork W2161850932 @default.
- W2513650310 hasRelatedWork W2954309534 @default.
- W2513650310 hasRelatedWork W3122903216 @default.
- W2513650310 hasRelatedWork W3210390693 @default.
- W2513650310 hasRelatedWork W615671618 @default.
- W2513650310 hasRelatedWork W633346208 @default.
- W2513650310 hasRelatedWork W2187867992 @default.
- W2513650310 hasVolume "96" @default.
- W2513650310 isParatext "false" @default.
- W2513650310 isRetracted "false" @default.
- W2513650310 magId "2513650310" @default.
- W2513650310 workType "article" @default.