Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513879435> ?p ?o ?g. }
- W2513879435 endingPage "5511" @default.
- W2513879435 startingPage "5495" @default.
- W2513879435 abstract "Many meta‐analyses combine results from only a small number of studies, a situation in which the between‐study variance is imprecisely estimated when standard methods are applied. Bayesian meta‐analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta‐analysis using data augmentation, in which we represent an informative conjugate prior for between‐study variance by pseudo data and use meta‐regression for estimation. To assist in this, we derive predictive inverse‐gamma distributions for the between‐study variance expected in future meta‐analyses. These may serve as priors for heterogeneity in new meta‐analyses. In a simulation study, we compare approximate Bayesian methods using meta‐regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta‐regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta‐analysis is described. The proposed method facilitates Bayesian meta‐analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd." @default.
- W2513879435 created "2016-09-16" @default.
- W2513879435 creator A5009426239 @default.
- W2513879435 creator A5014553741 @default.
- W2513879435 creator A5031195893 @default.
- W2513879435 creator A5041725375 @default.
- W2513879435 creator A5043222919 @default.
- W2513879435 creator A5058039205 @default.
- W2513879435 date "2016-08-30" @default.
- W2513879435 modified "2023-10-15" @default.
- W2513879435 title "Implementing informative priors for heterogeneity in meta‐analysis using meta‐regression and pseudo data" @default.
- W2513879435 cites W1497018112 @default.
- W2513879435 cites W1517555081 @default.
- W2513879435 cites W1552630832 @default.
- W2513879435 cites W1633467982 @default.
- W2513879435 cites W1857542727 @default.
- W2513879435 cites W1965385672 @default.
- W2513879435 cites W1971895240 @default.
- W2513879435 cites W1982126198 @default.
- W2513879435 cites W2006979162 @default.
- W2513879435 cites W2016880798 @default.
- W2513879435 cites W2018696687 @default.
- W2513879435 cites W2037593179 @default.
- W2513879435 cites W2062356051 @default.
- W2513879435 cites W2075046475 @default.
- W2513879435 cites W2088441249 @default.
- W2513879435 cites W2096883889 @default.
- W2513879435 cites W2105739787 @default.
- W2513879435 cites W2107328434 @default.
- W2513879435 cites W2108116635 @default.
- W2513879435 cites W2111080869 @default.
- W2513879435 cites W2111653092 @default.
- W2513879435 cites W2112885721 @default.
- W2513879435 cites W2116455948 @default.
- W2513879435 cites W2118026870 @default.
- W2513879435 cites W2122905005 @default.
- W2513879435 cites W2126930838 @default.
- W2513879435 cites W2128841980 @default.
- W2513879435 cites W2131701504 @default.
- W2513879435 cites W2153043827 @default.
- W2513879435 cites W2156644139 @default.
- W2513879435 cites W2160063906 @default.
- W2513879435 cites W2160652035 @default.
- W2513879435 cites W2166546590 @default.
- W2513879435 cites W2218942987 @default.
- W2513879435 cites W4240278298 @default.
- W2513879435 cites W4249731213 @default.
- W2513879435 cites W4365786608 @default.
- W2513879435 doi "https://doi.org/10.1002/sim.7090" @default.
- W2513879435 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5111594" @default.
- W2513879435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27577523" @default.
- W2513879435 hasPublicationYear "2016" @default.
- W2513879435 type Work @default.
- W2513879435 sameAs 2513879435 @default.
- W2513879435 citedByCount "29" @default.
- W2513879435 countsByYear W25138794352018 @default.
- W2513879435 countsByYear W25138794352019 @default.
- W2513879435 countsByYear W25138794352020 @default.
- W2513879435 countsByYear W25138794352021 @default.
- W2513879435 countsByYear W25138794352022 @default.
- W2513879435 countsByYear W25138794352023 @default.
- W2513879435 crossrefType "journal-article" @default.
- W2513879435 hasAuthorship W2513879435A5009426239 @default.
- W2513879435 hasAuthorship W2513879435A5014553741 @default.
- W2513879435 hasAuthorship W2513879435A5031195893 @default.
- W2513879435 hasAuthorship W2513879435A5041725375 @default.
- W2513879435 hasAuthorship W2513879435A5043222919 @default.
- W2513879435 hasAuthorship W2513879435A5058039205 @default.
- W2513879435 hasBestOaLocation W25138794351 @default.
- W2513879435 hasConcept C105795698 @default.
- W2513879435 hasConcept C107673813 @default.
- W2513879435 hasConcept C111350023 @default.
- W2513879435 hasConcept C149782125 @default.
- W2513879435 hasConcept C158424031 @default.
- W2513879435 hasConcept C160234255 @default.
- W2513879435 hasConcept C162376815 @default.
- W2513879435 hasConcept C177769412 @default.
- W2513879435 hasConcept C33923547 @default.
- W2513879435 hasConcept C37903108 @default.
- W2513879435 hasConcept C41008148 @default.
- W2513879435 hasConcept C95923904 @default.
- W2513879435 hasConceptScore W2513879435C105795698 @default.
- W2513879435 hasConceptScore W2513879435C107673813 @default.
- W2513879435 hasConceptScore W2513879435C111350023 @default.
- W2513879435 hasConceptScore W2513879435C149782125 @default.
- W2513879435 hasConceptScore W2513879435C158424031 @default.
- W2513879435 hasConceptScore W2513879435C160234255 @default.
- W2513879435 hasConceptScore W2513879435C162376815 @default.
- W2513879435 hasConceptScore W2513879435C177769412 @default.
- W2513879435 hasConceptScore W2513879435C33923547 @default.
- W2513879435 hasConceptScore W2513879435C37903108 @default.
- W2513879435 hasConceptScore W2513879435C41008148 @default.
- W2513879435 hasConceptScore W2513879435C95923904 @default.
- W2513879435 hasFunder F4320334626 @default.
- W2513879435 hasIssue "29" @default.
- W2513879435 hasLocation W25138794351 @default.
- W2513879435 hasLocation W25138794352 @default.
- W2513879435 hasLocation W25138794353 @default.