Matches in SemOpenAlex for { <https://semopenalex.org/work/W2513888928> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2513888928 abstract "Optimizing the location of wells to achieve the full production potential of a hydrocarbon reservoir is a crucial task in field development. However, because subsurface flow simulations are computationally demanding, implementing model-based optimization procedures to aid the search for optimal well locations can be overly time-consuming. Moreover, to account for model uncertainty, we often need to evaluate the performance of well configurations over multiple geological realizations, which calls for efficient strategies to reduce computation. To this end, we propose a robust optimization procedure in which at each iteration of the optimization procedure, instead of evaluating the well configuration over all available realizations, we approximate the expected performance using a small subset of randomly selected model realizations. Since the samples are selected randomly, we expect all samples to eventually be included in the performance evaluation after a certain number of iterations. However, using only a few random realizations increases the noise level of the computed objective function, necessitating the use of a stochastic optimizer. We use the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, which is known to be robust against noise in the objective function. The SPSA algorithm is a local optimization method that uses an efficient stochastic gradient approximation which is easy to implement. Discrete versions of SPSA have been used for vertical well placement optimization. In this work, we implement a continuous version of the SPSA algorithm for optimizing well locations and trajectories. Moreover, we demonstrate incorporating a Hessian approximation in the SPSA implementation can improve its performance. In this paper, the performance of different forms of the SPSA algorithm (discrete, continuous, and adaptive) is evaluated using several numerical experiments, followed by a discussion of the properties of the proposed approach in comparison with global optimization techniques. Finally, the method is applied to several numerical experiments, including case studies involving both vertical and horizontal wells, to demonstrate its applicability and computational efficiency." @default.
- W2513888928 created "2016-09-16" @default.
- W2513888928 creator A5002240186 @default.
- W2513888928 creator A5003736943 @default.
- W2513888928 creator A5028803070 @default.
- W2513888928 creator A5073767410 @default.
- W2513888928 creator A5077762571 @default.
- W2513888928 date "2016-08-29" @default.
- W2513888928 modified "2023-09-23" @default.
- W2513888928 title "Application of Simultaneous Perturbation Stochastic Approximation to Well Placement Optimization under Uncertainty" @default.
- W2513888928 cites W1968598783 @default.
- W2513888928 cites W1990784077 @default.
- W2513888928 cites W1992517961 @default.
- W2513888928 cites W2036409858 @default.
- W2513888928 cites W2038659300 @default.
- W2513888928 cites W2050892063 @default.
- W2513888928 cites W2083753356 @default.
- W2513888928 cites W2088123707 @default.
- W2513888928 cites W2095399263 @default.
- W2513888928 cites W2105896816 @default.
- W2513888928 cites W2107206595 @default.
- W2513888928 cites W2312889315 @default.
- W2513888928 doi "https://doi.org/10.3997/2214-4609.201601873" @default.
- W2513888928 hasPublicationYear "2016" @default.
- W2513888928 type Work @default.
- W2513888928 sameAs 2513888928 @default.
- W2513888928 citedByCount "5" @default.
- W2513888928 countsByYear W25138889282019 @default.
- W2513888928 countsByYear W25138889282020 @default.
- W2513888928 countsByYear W25138889282021 @default.
- W2513888928 countsByYear W25138889282022 @default.
- W2513888928 crossrefType "proceedings-article" @default.
- W2513888928 hasAuthorship W2513888928A5002240186 @default.
- W2513888928 hasAuthorship W2513888928A5003736943 @default.
- W2513888928 hasAuthorship W2513888928A5028803070 @default.
- W2513888928 hasAuthorship W2513888928A5073767410 @default.
- W2513888928 hasAuthorship W2513888928A5077762571 @default.
- W2513888928 hasConcept C105795698 @default.
- W2513888928 hasConcept C121332964 @default.
- W2513888928 hasConcept C126255220 @default.
- W2513888928 hasConcept C154945302 @default.
- W2513888928 hasConcept C177918212 @default.
- W2513888928 hasConcept C194387892 @default.
- W2513888928 hasConcept C2775924081 @default.
- W2513888928 hasConcept C2779880469 @default.
- W2513888928 hasConcept C28826006 @default.
- W2513888928 hasConcept C33923547 @default.
- W2513888928 hasConcept C41008148 @default.
- W2513888928 hasConcept C47446073 @default.
- W2513888928 hasConcept C62520636 @default.
- W2513888928 hasConcept C8272713 @default.
- W2513888928 hasConceptScore W2513888928C105795698 @default.
- W2513888928 hasConceptScore W2513888928C121332964 @default.
- W2513888928 hasConceptScore W2513888928C126255220 @default.
- W2513888928 hasConceptScore W2513888928C154945302 @default.
- W2513888928 hasConceptScore W2513888928C177918212 @default.
- W2513888928 hasConceptScore W2513888928C194387892 @default.
- W2513888928 hasConceptScore W2513888928C2775924081 @default.
- W2513888928 hasConceptScore W2513888928C2779880469 @default.
- W2513888928 hasConceptScore W2513888928C28826006 @default.
- W2513888928 hasConceptScore W2513888928C33923547 @default.
- W2513888928 hasConceptScore W2513888928C41008148 @default.
- W2513888928 hasConceptScore W2513888928C47446073 @default.
- W2513888928 hasConceptScore W2513888928C62520636 @default.
- W2513888928 hasConceptScore W2513888928C8272713 @default.
- W2513888928 hasLocation W25138889281 @default.
- W2513888928 hasOpenAccess W2513888928 @default.
- W2513888928 hasPrimaryLocation W25138889281 @default.
- W2513888928 hasRelatedWork W1973158011 @default.
- W2513888928 hasRelatedWork W1981116044 @default.
- W2513888928 hasRelatedWork W1982988061 @default.
- W2513888928 hasRelatedWork W2038213655 @default.
- W2513888928 hasRelatedWork W2144939935 @default.
- W2513888928 hasRelatedWork W2157336242 @default.
- W2513888928 hasRelatedWork W2167001209 @default.
- W2513888928 hasRelatedWork W2367516560 @default.
- W2513888928 hasRelatedWork W2734870733 @default.
- W2513888928 hasRelatedWork W641195677 @default.
- W2513888928 isParatext "false" @default.
- W2513888928 isRetracted "false" @default.
- W2513888928 magId "2513888928" @default.
- W2513888928 workType "article" @default.