Matches in SemOpenAlex for { <https://semopenalex.org/work/W2514201745> ?p ?o ?g. }
- W2514201745 abstract "Let $X$ be a closed oriented connected topological manifold of dimension $ngeq 5$. The structure group of $X$ is the abelian group of equivalence classes of all pairs $(f, M)$ such that $M$ is a closed oriented manifold and $fcolon M to X$ is an orientation-preserving homotopy equivalence. The main purpose of this article is to prove that a higher rho invariant defines a group homomorphism from the topological structure group of $X$ to the $C^*$-algebraic structure group of $X$. In fact, we introduce a higher rho invariant map on the homology manifold structure group of a closed oriented connected $textit{topological}$ manifold, and prove its additivity. This higher rho invariant map restricts to the higher rho invariant map on the topological structure group. More generally, the same techniques developed in this paper can be applied to define a higher rho invariant map on the homology manifold structure group of a closed oriented connected $textit{homology}$ manifold. As an application, we use the additivity of the higher rho invariant map to study non-rigidity of topological manifolds. More precisely, we give a lower bound for the free rank of the $textit{algebraically reduced}$ structure group of $X$ by the number of torsion elements in $pi_1 X$. Here the algebraic reduced structure group of $X$ is the quotient of the topological structure group of $X$ modulo a certain action of self-homotopy equivalences of $X$. We also introduce a notion of homological higher rho invariant, which can be used to detect many elements in the structure group of a closed oriented topological manifold, even when the fundamental group of the manifold is torsion free. In particular, we apply this homological higher rho invariant to show that the structure group is not finitely generated for a class of manifolds." @default.
- W2514201745 created "2016-09-16" @default.
- W2514201745 creator A5020451303 @default.
- W2514201745 creator A5043058455 @default.
- W2514201745 creator A5073943501 @default.
- W2514201745 date "2016-08-11" @default.
- W2514201745 modified "2023-09-25" @default.
- W2514201745 title "Additivity of higher rho invariants and nonrigidity of topological manifolds" @default.
- W2514201745 cites W135327735 @default.
- W2514201745 cites W138546290 @default.
- W2514201745 cites W1502795776 @default.
- W2514201745 cites W1506796430 @default.
- W2514201745 cites W1522382323 @default.
- W2514201745 cites W1556851316 @default.
- W2514201745 cites W1564361338 @default.
- W2514201745 cites W1596185498 @default.
- W2514201745 cites W1789328509 @default.
- W2514201745 cites W1930081649 @default.
- W2514201745 cites W1936210223 @default.
- W2514201745 cites W1965791465 @default.
- W2514201745 cites W1965832263 @default.
- W2514201745 cites W1966642002 @default.
- W2514201745 cites W1969419798 @default.
- W2514201745 cites W1971674934 @default.
- W2514201745 cites W1972434432 @default.
- W2514201745 cites W1974598548 @default.
- W2514201745 cites W1980655284 @default.
- W2514201745 cites W1981014057 @default.
- W2514201745 cites W1986657393 @default.
- W2514201745 cites W1988396719 @default.
- W2514201745 cites W1990375149 @default.
- W2514201745 cites W1990645519 @default.
- W2514201745 cites W1997148496 @default.
- W2514201745 cites W2002793418 @default.
- W2514201745 cites W2004566537 @default.
- W2514201745 cites W2005217582 @default.
- W2514201745 cites W2007579992 @default.
- W2514201745 cites W2011907873 @default.
- W2514201745 cites W2012676239 @default.
- W2514201745 cites W2014561979 @default.
- W2514201745 cites W2015365898 @default.
- W2514201745 cites W2019950755 @default.
- W2514201745 cites W2024527795 @default.
- W2514201745 cites W2026092010 @default.
- W2514201745 cites W2041278373 @default.
- W2514201745 cites W2050025267 @default.
- W2514201745 cites W2063775397 @default.
- W2514201745 cites W2068538953 @default.
- W2514201745 cites W2068611929 @default.
- W2514201745 cites W2074452259 @default.
- W2514201745 cites W2077184466 @default.
- W2514201745 cites W2077258922 @default.
- W2514201745 cites W2084022751 @default.
- W2514201745 cites W2085558061 @default.
- W2514201745 cites W2099192359 @default.
- W2514201745 cites W2101830403 @default.
- W2514201745 cites W2108091652 @default.
- W2514201745 cites W2110588906 @default.
- W2514201745 cites W2122610165 @default.
- W2514201745 cites W2127494126 @default.
- W2514201745 cites W2141777881 @default.
- W2514201745 cites W2281590959 @default.
- W2514201745 cites W2322845281 @default.
- W2514201745 cites W2332910593 @default.
- W2514201745 cites W2334724188 @default.
- W2514201745 cites W2391048051 @default.
- W2514201745 cites W2413581992 @default.
- W2514201745 cites W2513026304 @default.
- W2514201745 cites W2616852479 @default.
- W2514201745 cites W2775442078 @default.
- W2514201745 cites W2962908852 @default.
- W2514201745 cites W2963124961 @default.
- W2514201745 cites W2963251470 @default.
- W2514201745 cites W2963486196 @default.
- W2514201745 cites W2964098811 @default.
- W2514201745 cites W2990838902 @default.
- W2514201745 cites W2995552688 @default.
- W2514201745 cites W3098567719 @default.
- W2514201745 cites W3098887209 @default.
- W2514201745 cites W3103923740 @default.
- W2514201745 cites W3207212243 @default.
- W2514201745 cites W586255992 @default.
- W2514201745 doi "https://doi.org/10.48550/arxiv.1608.03661" @default.
- W2514201745 hasPublicationYear "2016" @default.
- W2514201745 type Work @default.
- W2514201745 sameAs 2514201745 @default.
- W2514201745 citedByCount "13" @default.
- W2514201745 countsByYear W25142017452016 @default.
- W2514201745 countsByYear W25142017452017 @default.
- W2514201745 countsByYear W25142017452018 @default.
- W2514201745 countsByYear W25142017452019 @default.
- W2514201745 countsByYear W25142017452020 @default.
- W2514201745 countsByYear W25142017452021 @default.
- W2514201745 countsByYear W25142017452022 @default.
- W2514201745 crossrefType "posted-content" @default.
- W2514201745 hasAuthorship W2514201745A5020451303 @default.
- W2514201745 hasAuthorship W2514201745A5043058455 @default.
- W2514201745 hasAuthorship W2514201745A5073943501 @default.
- W2514201745 hasBestOaLocation W25142017451 @default.
- W2514201745 hasConcept C114614502 @default.