Matches in SemOpenAlex for { <https://semopenalex.org/work/W2514419993> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2514419993 endingPage "3171" @default.
- W2514419993 startingPage "3161" @default.
- W2514419993 abstract "The number of limit cycles of the cubic Lie´nard polynomial differential system of the form x˙ = y, y˙ = - g(x)- f (x)y is examined, where f (x) is a polynomial of degree three and g(x), a polynomial of degree one and two. The accurate upper bound of the maximum number of limit cycles of this Lie´nard differential system is obtained. By using the first order averaging theory, this system is shown to bifurcate from the periodic orbits of the linear center x˙ = y, y˙= -x. The maximum number of limit cycles of the differential system is found to be unique." @default.
- W2514419993 created "2016-09-16" @default.
- W2514419993 creator A5005214242 @default.
- W2514419993 creator A5036467505 @default.
- W2514419993 creator A5078029483 @default.
- W2514419993 date "2014-01-01" @default.
- W2514419993 modified "2023-10-16" @default.
- W2514419993 title "Maximum number of limit cycles of cubic Lienard differential system" @default.
- W2514419993 cites W1025505265 @default.
- W2514419993 cites W1579026724 @default.
- W2514419993 cites W1976557666 @default.
- W2514419993 cites W1987424788 @default.
- W2514419993 cites W1987546198 @default.
- W2514419993 cites W1990931989 @default.
- W2514419993 cites W1991043922 @default.
- W2514419993 cites W2005410292 @default.
- W2514419993 cites W2013335651 @default.
- W2514419993 cites W2016207969 @default.
- W2514419993 cites W2026785981 @default.
- W2514419993 cites W2056447802 @default.
- W2514419993 cites W2076924905 @default.
- W2514419993 cites W2079830378 @default.
- W2514419993 cites W2091384477 @default.
- W2514419993 cites W2118604725 @default.
- W2514419993 cites W2142826783 @default.
- W2514419993 cites W2158334808 @default.
- W2514419993 cites W2169484546 @default.
- W2514419993 cites W2304834094 @default.
- W2514419993 cites W2606302353 @default.
- W2514419993 doi "https://doi.org/10.12988/ams.2014.43147" @default.
- W2514419993 hasPublicationYear "2014" @default.
- W2514419993 type Work @default.
- W2514419993 sameAs 2514419993 @default.
- W2514419993 citedByCount "0" @default.
- W2514419993 crossrefType "journal-article" @default.
- W2514419993 hasAuthorship W2514419993A5005214242 @default.
- W2514419993 hasAuthorship W2514419993A5036467505 @default.
- W2514419993 hasAuthorship W2514419993A5078029483 @default.
- W2514419993 hasConcept C121332964 @default.
- W2514419993 hasConcept C134306372 @default.
- W2514419993 hasConcept C151201525 @default.
- W2514419993 hasConcept C33923547 @default.
- W2514419993 hasConcept C93226319 @default.
- W2514419993 hasConcept C97355855 @default.
- W2514419993 hasConceptScore W2514419993C121332964 @default.
- W2514419993 hasConceptScore W2514419993C134306372 @default.
- W2514419993 hasConceptScore W2514419993C151201525 @default.
- W2514419993 hasConceptScore W2514419993C33923547 @default.
- W2514419993 hasConceptScore W2514419993C93226319 @default.
- W2514419993 hasConceptScore W2514419993C97355855 @default.
- W2514419993 hasLocation W25144199931 @default.
- W2514419993 hasOpenAccess W2514419993 @default.
- W2514419993 hasPrimaryLocation W25144199931 @default.
- W2514419993 hasRelatedWork W1634656355 @default.
- W2514419993 hasRelatedWork W1971702062 @default.
- W2514419993 hasRelatedWork W2018065383 @default.
- W2514419993 hasRelatedWork W2018979944 @default.
- W2514419993 hasRelatedWork W2058379671 @default.
- W2514419993 hasRelatedWork W2153822684 @default.
- W2514419993 hasRelatedWork W2170766060 @default.
- W2514419993 hasRelatedWork W2331934617 @default.
- W2514419993 hasRelatedWork W2387738704 @default.
- W2514419993 hasRelatedWork W3099925930 @default.
- W2514419993 hasVolume "8" @default.
- W2514419993 isParatext "false" @default.
- W2514419993 isRetracted "false" @default.
- W2514419993 magId "2514419993" @default.
- W2514419993 workType "article" @default.