Matches in SemOpenAlex for { <https://semopenalex.org/work/W2514783721> ?p ?o ?g. }
- W2514783721 abstract "In this paper, we propose a novel feature guided Gaussian mixture model (FG-GMM) for image matching, which typically requires matching two sets of feature points extracted from the given images. We formulate the problem as estimation of a feature guided mixture of densities: a GMM is fitted to one point set, such that both the centers and local features of the Gaussian densities are constrained to coincide with the other point set. The problem is solved under a unified maximum-likelihood framework together with an iterative semi-supervised Expectation-Maximization (EM) algorithm initialized by the confident feature correspondences. The image transformation is specified in a reproducing kernel Hilbert space and a sparse approximation is adopted to achieve a fast implementation. Extensive experiments on various real images show the robustness of our approach, which consistently outperforms other state-of-the-art methods." @default.
- W2514783721 created "2016-09-16" @default.
- W2514783721 creator A5004753222 @default.
- W2514783721 creator A5004787370 @default.
- W2514783721 creator A5040010053 @default.
- W2514783721 creator A5074618663 @default.
- W2514783721 creator A5087165831 @default.
- W2514783721 date "2016-07-01" @default.
- W2514783721 modified "2023-09-23" @default.
- W2514783721 title "Robust image matching via feature guided Gaussian mixture model" @default.
- W2514783721 cites W1663973292 @default.
- W2514783721 cites W1950038212 @default.
- W2514783721 cites W1980911747 @default.
- W2514783721 cites W1986280275 @default.
- W2514783721 cites W2001881245 @default.
- W2514783721 cites W2028683638 @default.
- W2514783721 cites W2046434485 @default.
- W2514783721 cites W2049981393 @default.
- W2514783721 cites W2066941820 @default.
- W2514783721 cites W2070789837 @default.
- W2514783721 cites W2071730188 @default.
- W2514783721 cites W2085261163 @default.
- W2514783721 cites W2088374681 @default.
- W2514783721 cites W2088777113 @default.
- W2514783721 cites W2097089247 @default.
- W2514783721 cites W2101563584 @default.
- W2514783721 cites W2106199912 @default.
- W2514783721 cites W2114354851 @default.
- W2514783721 cites W2115003579 @default.
- W2514783721 cites W2119305944 @default.
- W2514783721 cites W2120501941 @default.
- W2514783721 cites W2124141313 @default.
- W2514783721 cites W2130871783 @default.
- W2514783721 cites W2134236847 @default.
- W2514783721 cites W2137089267 @default.
- W2514783721 cites W2150190641 @default.
- W2514783721 cites W2151103935 @default.
- W2514783721 cites W2157656099 @default.
- W2514783721 cites W2169633581 @default.
- W2514783721 cites W2171490473 @default.
- W2514783721 cites W59289346 @default.
- W2514783721 doi "https://doi.org/10.1109/icme.2016.7552867" @default.
- W2514783721 hasPublicationYear "2016" @default.
- W2514783721 type Work @default.
- W2514783721 sameAs 2514783721 @default.
- W2514783721 citedByCount "3" @default.
- W2514783721 countsByYear W25147837212017 @default.
- W2514783721 countsByYear W25147837212021 @default.
- W2514783721 crossrefType "proceedings-article" @default.
- W2514783721 hasAuthorship W2514783721A5004753222 @default.
- W2514783721 hasAuthorship W2514783721A5004787370 @default.
- W2514783721 hasAuthorship W2514783721A5040010053 @default.
- W2514783721 hasAuthorship W2514783721A5074618663 @default.
- W2514783721 hasAuthorship W2514783721A5087165831 @default.
- W2514783721 hasConcept C104317684 @default.
- W2514783721 hasConcept C105795698 @default.
- W2514783721 hasConcept C114614502 @default.
- W2514783721 hasConcept C121332964 @default.
- W2514783721 hasConcept C134306372 @default.
- W2514783721 hasConcept C138885662 @default.
- W2514783721 hasConcept C153180895 @default.
- W2514783721 hasConcept C154945302 @default.
- W2514783721 hasConcept C163716315 @default.
- W2514783721 hasConcept C165064840 @default.
- W2514783721 hasConcept C182081679 @default.
- W2514783721 hasConcept C185592680 @default.
- W2514783721 hasConcept C200336642 @default.
- W2514783721 hasConcept C2524010 @default.
- W2514783721 hasConcept C2776401178 @default.
- W2514783721 hasConcept C28719098 @default.
- W2514783721 hasConcept C33923547 @default.
- W2514783721 hasConcept C41008148 @default.
- W2514783721 hasConcept C41895202 @default.
- W2514783721 hasConcept C49781872 @default.
- W2514783721 hasConcept C52622490 @default.
- W2514783721 hasConcept C55493867 @default.
- W2514783721 hasConcept C61224824 @default.
- W2514783721 hasConcept C62520636 @default.
- W2514783721 hasConcept C62799726 @default.
- W2514783721 hasConcept C63479239 @default.
- W2514783721 hasConcept C74193536 @default.
- W2514783721 hasConcept C80884492 @default.
- W2514783721 hasConcept C83665646 @default.
- W2514783721 hasConceptScore W2514783721C104317684 @default.
- W2514783721 hasConceptScore W2514783721C105795698 @default.
- W2514783721 hasConceptScore W2514783721C114614502 @default.
- W2514783721 hasConceptScore W2514783721C121332964 @default.
- W2514783721 hasConceptScore W2514783721C134306372 @default.
- W2514783721 hasConceptScore W2514783721C138885662 @default.
- W2514783721 hasConceptScore W2514783721C153180895 @default.
- W2514783721 hasConceptScore W2514783721C154945302 @default.
- W2514783721 hasConceptScore W2514783721C163716315 @default.
- W2514783721 hasConceptScore W2514783721C165064840 @default.
- W2514783721 hasConceptScore W2514783721C182081679 @default.
- W2514783721 hasConceptScore W2514783721C185592680 @default.
- W2514783721 hasConceptScore W2514783721C200336642 @default.
- W2514783721 hasConceptScore W2514783721C2524010 @default.
- W2514783721 hasConceptScore W2514783721C2776401178 @default.
- W2514783721 hasConceptScore W2514783721C28719098 @default.
- W2514783721 hasConceptScore W2514783721C33923547 @default.