Matches in SemOpenAlex for { <https://semopenalex.org/work/W2515065416> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2515065416 abstract "Reported observations suggest that Newton updates that are computed during the course of a fully-implicit time step are often sparse. The level of sparsity can vary dramatically from nonlinear iteration to the next, and across time steps. Reported observations suggest that the level of sparsity can be as large as 95%. This work develops an algorithm that accurately predetermines the nonzero elements of the Newton update, and subsequently, can compute it by only solving a truncated linear system. Several alternative ad hoc sparsity prediction strategies have been proposed. Due to their inability to consistently and accurately predetermine the sparsity set, the resulting Newton updates that are computed are inaccurate, leading to a severe degradation of the nonlinear convergence rate. An exact strategy based on an analysis of the sparsity graph of the Jacobian matrix was also proposed for two phase incompressible flow without gravity. Although exact, the proposed strategy cannot be generalized to more complex physics or numerical approximations. Recently, a theoretically sharp and conservative estimate for the sparsity set was derived specifically for the pressure and saturation variables in two-phase sequential-implicit simulation. In this strategy, the discrete Newton update was related to analytical solutions of linear Partial Differential Equations for flow and transport independently. The analytical solutions were evaluated and projected onto the computational domain, thereby providing an estimate of the sparsity set. The theoretically reliable algorithm was demonstrated to reduce the sequential-implicit simulation time for general two phase flow in the full SPE 10 comparative geological model by 5 fold. In this work, the approach is extended to general fully-implicit simulation of coupled flow and multicomponent transport. This is accomplished by considering a canonical functional form of the equations for flow and a system of transported quantities. The analytical estimate is derived by solving the system of linear differential equations using the Schur complement decomposition in functional space. When applied to various simulations of three-phase flow recovery processes in the full SPE 10 model, the observed reduction in computational effort ranged between four and tenfold depending on the level of total compressibility in the system and on the time step size. To investigate the scalability of the algorithm, we applied it to refined models of the SPE 10 case and to multicomponent problems. The improvement in computational speed scales strongly with the number of transport components, and to a lesser degree with problem size." @default.
- W2515065416 created "2016-09-16" @default.
- W2515065416 creator A5037006015 @default.
- W2515065416 creator A5059399840 @default.
- W2515065416 date "2016-08-29" @default.
- W2515065416 modified "2023-09-26" @default.
- W2515065416 title "Localized Computation of Newton Updates for General Fully-implicit Reservoir Simulation" @default.
- W2515065416 doi "https://doi.org/10.3997/2214-4609.201601898" @default.
- W2515065416 hasPublicationYear "2016" @default.
- W2515065416 type Work @default.
- W2515065416 sameAs 2515065416 @default.
- W2515065416 citedByCount "1" @default.
- W2515065416 countsByYear W25150654162017 @default.
- W2515065416 crossrefType "proceedings-article" @default.
- W2515065416 hasAuthorship W2515065416A5037006015 @default.
- W2515065416 hasAuthorship W2515065416A5059399840 @default.
- W2515065416 hasConcept C11413529 @default.
- W2515065416 hasConcept C121332964 @default.
- W2515065416 hasConcept C126255220 @default.
- W2515065416 hasConcept C158622935 @default.
- W2515065416 hasConcept C162324750 @default.
- W2515065416 hasConcept C200331156 @default.
- W2515065416 hasConcept C2777303404 @default.
- W2515065416 hasConcept C28826006 @default.
- W2515065416 hasConcept C33923547 @default.
- W2515065416 hasConcept C41008148 @default.
- W2515065416 hasConcept C45374587 @default.
- W2515065416 hasConcept C50522688 @default.
- W2515065416 hasConcept C62520636 @default.
- W2515065416 hasConcept C85189116 @default.
- W2515065416 hasConceptScore W2515065416C11413529 @default.
- W2515065416 hasConceptScore W2515065416C121332964 @default.
- W2515065416 hasConceptScore W2515065416C126255220 @default.
- W2515065416 hasConceptScore W2515065416C158622935 @default.
- W2515065416 hasConceptScore W2515065416C162324750 @default.
- W2515065416 hasConceptScore W2515065416C200331156 @default.
- W2515065416 hasConceptScore W2515065416C2777303404 @default.
- W2515065416 hasConceptScore W2515065416C28826006 @default.
- W2515065416 hasConceptScore W2515065416C33923547 @default.
- W2515065416 hasConceptScore W2515065416C41008148 @default.
- W2515065416 hasConceptScore W2515065416C45374587 @default.
- W2515065416 hasConceptScore W2515065416C50522688 @default.
- W2515065416 hasConceptScore W2515065416C62520636 @default.
- W2515065416 hasConceptScore W2515065416C85189116 @default.
- W2515065416 hasLocation W25150654161 @default.
- W2515065416 hasOpenAccess W2515065416 @default.
- W2515065416 hasPrimaryLocation W25150654161 @default.
- W2515065416 hasRelatedWork W2142877392 @default.
- W2515065416 hasRelatedWork W2287455428 @default.
- W2515065416 hasRelatedWork W2305312347 @default.
- W2515065416 hasRelatedWork W2314966938 @default.
- W2515065416 hasRelatedWork W2317103391 @default.
- W2515065416 hasRelatedWork W2551923682 @default.
- W2515065416 hasRelatedWork W2616953687 @default.
- W2515065416 hasRelatedWork W2792346541 @default.
- W2515065416 hasRelatedWork W2805131913 @default.
- W2515065416 hasRelatedWork W2888737204 @default.
- W2515065416 hasRelatedWork W2890331032 @default.
- W2515065416 hasRelatedWork W2945077354 @default.
- W2515065416 hasRelatedWork W2972012006 @default.
- W2515065416 hasRelatedWork W2973300284 @default.
- W2515065416 hasRelatedWork W3084119156 @default.
- W2515065416 hasRelatedWork W3088073297 @default.
- W2515065416 hasRelatedWork W3112199937 @default.
- W2515065416 hasRelatedWork W3164544935 @default.
- W2515065416 hasRelatedWork W3210314037 @default.
- W2515065416 hasRelatedWork W3213335643 @default.
- W2515065416 isParatext "false" @default.
- W2515065416 isRetracted "false" @default.
- W2515065416 magId "2515065416" @default.
- W2515065416 workType "article" @default.