Matches in SemOpenAlex for { <https://semopenalex.org/work/W2515852022> ?p ?o ?g. }
- W2515852022 endingPage "1437" @default.
- W2515852022 startingPage "1422" @default.
- W2515852022 abstract "Stochastic Programming (SP) has long been considered a well-justified yet computationally challenging paradigm for practical applications. Computational studies in the literature often involve approximating a large number of scenarios by using a small number of scenarios to be processed via deterministic solvers, or running Sample Average Approximation on some genre of high performance machines so that statistically acceptable bounds can be obtained. In this paper we show that for a class of stochastic linear programming problems, an alternative approach known as Stochastic Decomposition (SD) can provide solutions of similar quality in far less computational time using ordinary desktop or laptop machines of today. In addition to these compelling computational results, we provide a stronger convergence result for SD, and introduce a new solution concept that we call the compromise decision. This new concept is attractive for algorithms that call for multiple replications in sampling-based convex optimization algorithms. For such replicated optimization, we show that the difference between an average solution and a compromise decision provides a natural stopping rule. We discuss three stopping criteria that enhance the reliability of the compromise decision, reducing bias and variance associated with the result. Finally our computational results cover a variety of instances from the literature, including a detailed study of SONET Switched Network (SSN), a network planning instance known to be more challenging than other test instances in the literature." @default.
- W2515852022 created "2016-09-16" @default.
- W2515852022 creator A5026466952 @default.
- W2515852022 creator A5035801000 @default.
- W2515852022 date "2016-12-01" @default.
- W2515852022 modified "2023-09-29" @default.
- W2515852022 title "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction" @default.
- W2515852022 cites W1569990960 @default.
- W2515852022 cites W1788645602 @default.
- W2515852022 cites W1832379062 @default.
- W2515852022 cites W1980412153 @default.
- W2515852022 cites W1983916623 @default.
- W2515852022 cites W1985007489 @default.
- W2515852022 cites W1992208280 @default.
- W2515852022 cites W1994377487 @default.
- W2515852022 cites W1995997744 @default.
- W2515852022 cites W2000257769 @default.
- W2515852022 cites W2000953623 @default.
- W2515852022 cites W2002569352 @default.
- W2515852022 cites W2010100928 @default.
- W2515852022 cites W2012607508 @default.
- W2515852022 cites W2014923785 @default.
- W2515852022 cites W2019441776 @default.
- W2515852022 cites W2026272724 @default.
- W2515852022 cites W2027852107 @default.
- W2515852022 cites W2038407338 @default.
- W2515852022 cites W2040358553 @default.
- W2515852022 cites W2045152979 @default.
- W2515852022 cites W2078135889 @default.
- W2515852022 cites W2086161653 @default.
- W2515852022 cites W2088296482 @default.
- W2515852022 cites W2094065539 @default.
- W2515852022 cites W2100760548 @default.
- W2515852022 cites W2117401085 @default.
- W2515852022 cites W2117897510 @default.
- W2515852022 cites W2122203560 @default.
- W2515852022 cites W2142926504 @default.
- W2515852022 cites W2156150807 @default.
- W2515852022 cites W2156629950 @default.
- W2515852022 cites W2166126709 @default.
- W2515852022 cites W2487144912 @default.
- W2515852022 cites W2491598486 @default.
- W2515852022 cites W2787894218 @default.
- W2515852022 cites W4236139273 @default.
- W2515852022 cites W4247165901 @default.
- W2515852022 cites W90125235 @default.
- W2515852022 doi "https://doi.org/10.1287/opre.2016.1526" @default.
- W2515852022 hasPublicationYear "2016" @default.
- W2515852022 type Work @default.
- W2515852022 sameAs 2515852022 @default.
- W2515852022 citedByCount "30" @default.
- W2515852022 countsByYear W25158520222017 @default.
- W2515852022 countsByYear W25158520222018 @default.
- W2515852022 countsByYear W25158520222019 @default.
- W2515852022 countsByYear W25158520222020 @default.
- W2515852022 countsByYear W25158520222021 @default.
- W2515852022 countsByYear W25158520222022 @default.
- W2515852022 countsByYear W25158520222023 @default.
- W2515852022 crossrefType "journal-article" @default.
- W2515852022 hasAuthorship W2515852022A5026466952 @default.
- W2515852022 hasAuthorship W2515852022A5035801000 @default.
- W2515852022 hasConcept C105795698 @default.
- W2515852022 hasConcept C111335779 @default.
- W2515852022 hasConcept C11413529 @default.
- W2515852022 hasConcept C115988155 @default.
- W2515852022 hasConcept C126255220 @default.
- W2515852022 hasConcept C137631369 @default.
- W2515852022 hasConcept C144024400 @default.
- W2515852022 hasConcept C19499675 @default.
- W2515852022 hasConcept C2524010 @default.
- W2515852022 hasConcept C33923547 @default.
- W2515852022 hasConcept C36289849 @default.
- W2515852022 hasConcept C41008148 @default.
- W2515852022 hasConcept C41045048 @default.
- W2515852022 hasConcept C46355384 @default.
- W2515852022 hasConcept C62644790 @default.
- W2515852022 hasConceptScore W2515852022C105795698 @default.
- W2515852022 hasConceptScore W2515852022C111335779 @default.
- W2515852022 hasConceptScore W2515852022C11413529 @default.
- W2515852022 hasConceptScore W2515852022C115988155 @default.
- W2515852022 hasConceptScore W2515852022C126255220 @default.
- W2515852022 hasConceptScore W2515852022C137631369 @default.
- W2515852022 hasConceptScore W2515852022C144024400 @default.
- W2515852022 hasConceptScore W2515852022C19499675 @default.
- W2515852022 hasConceptScore W2515852022C2524010 @default.
- W2515852022 hasConceptScore W2515852022C33923547 @default.
- W2515852022 hasConceptScore W2515852022C36289849 @default.
- W2515852022 hasConceptScore W2515852022C41008148 @default.
- W2515852022 hasConceptScore W2515852022C41045048 @default.
- W2515852022 hasConceptScore W2515852022C46355384 @default.
- W2515852022 hasConceptScore W2515852022C62644790 @default.
- W2515852022 hasIssue "6" @default.
- W2515852022 hasLocation W25158520221 @default.
- W2515852022 hasOpenAccess W2515852022 @default.
- W2515852022 hasPrimaryLocation W25158520221 @default.
- W2515852022 hasRelatedWork W1497066013 @default.
- W2515852022 hasRelatedWork W1979694586 @default.
- W2515852022 hasRelatedWork W2000508521 @default.