Matches in SemOpenAlex for { <https://semopenalex.org/work/W2516055678> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2516055678 abstract "This paper contributes a novel psychological dataset consisting of counselors’ behaviors during Motivational Interviewing encounters. Annotations were conducted using the Motivational Interviewing Integrity Treatment (MITI). We describe relevant aspects associated with the construction of a dataset that relies on behavioral coding such as data acquisition, transcription, expert data annotations, and reliability assessments. The dataset contains a total of 22,719 counselor utterances extracted from 277 motivational interviewing sessions that are annotated with 10 counselor behavioral codes. The reliability analysis showed that annotators achieved excellent agreement at session level, with Intraclass Correlation Coefficient (ICC) scores in the range of 0.75 to 1, and fair to good agreement at utterance level, with Cohen’s Kappa scores ranging from 0.31 to 0.64. Behavioral interventions are a promising approach to address public health issues such as smoking cessation, increasing physical activity, and reducing substance abuse, among others (Resnicow et al., 2002). In particular, Motivational Interviewing (MI), a client centered psychotherapy style, has been receiving increasing attention from the clinical psychology community due to its established efficacy for treating addiction and other behaviors (Moyers et al., 2009; Apodaca et al., 2014; Barnett et al., 2014; Catley et al., 2012). Despite its potential benefits in combating addiction and in providing broader disease prevention and management, implementing MI counseling at larger scale or in other domains is limited by the need for human-based evaluations. Currently, this requires a human either watching or listening to video-tapes and then providing evaluative feedback. Recently, computational approaches have been proposed to aid the MI evaluation process (Atkins et al., 2014; Xiao et al., 2014; Klonek et al., 2015). However, learning resources for this task are not readily available. Having such resources will enable the application of data-driven strategies for the automatic coding of counseling behaviors, thus providing researchers with automatic means for the evaluation of MI. Moreover, this can also be useful to explore how MI works by relating MI behaviors to health outcomes, and to provide counselors with evaluative feedback that helps them improve their MI skills. In this paper, we present the construction and validation of a dataset annotated with counselor verbal behaviours using the Motivational Interviewing Treatment Integrity 4.0 (MITI), which is the current gold standard for MI-based psychology interventions. The dataset is derived from 277 MI sessions containing a total of 22,719 coded utterances. 1 Motivational Interviewing Miller and Rollnick define MI as a collaborative, goal-oriented style of psychotherapy with particular attention to the language of change (Miller and Rollnick, 2013). MI has been widely used as a treatment method in clinical trials on psychotherapy research to address addictive behaviors such as alcohol, tobacco and drug use; promote healthier habits such as nutrition and fitness; and help clients with" @default.
- W2516055678 created "2016-09-16" @default.
- W2516055678 creator A5001694519 @default.
- W2516055678 creator A5007955173 @default.
- W2516055678 creator A5065366930 @default.
- W2516055678 creator A5069988231 @default.
- W2516055678 creator A5082450455 @default.
- W2516055678 date "2016-01-01" @default.
- W2516055678 modified "2023-10-13" @default.
- W2516055678 title "Building a Motivational Interviewing Dataset" @default.
- W2516055678 cites W1235794088 @default.
- W2516055678 cites W1554631697 @default.
- W2516055678 cites W1973200191 @default.
- W2516055678 cites W1973335380 @default.
- W2516055678 cites W1995814612 @default.
- W2516055678 cites W2021135781 @default.
- W2516055678 cites W2027791497 @default.
- W2516055678 cites W2055032581 @default.
- W2516055678 cites W2068976900 @default.
- W2516055678 cites W2076278397 @default.
- W2516055678 cites W2076774546 @default.
- W2516055678 cites W2086235838 @default.
- W2516055678 cites W2087978313 @default.
- W2516055678 cites W2108384017 @default.
- W2516055678 cites W2132235630 @default.
- W2516055678 cites W2134498732 @default.
- W2516055678 cites W2140772986 @default.
- W2516055678 cites W2149129894 @default.
- W2516055678 cites W2152403969 @default.
- W2516055678 cites W2154608152 @default.
- W2516055678 cites W2172146650 @default.
- W2516055678 cites W2332006953 @default.
- W2516055678 cites W2396718206 @default.
- W2516055678 cites W2406928398 @default.
- W2516055678 cites W3018382390 @default.
- W2516055678 doi "https://doi.org/10.18653/v1/w16-0305" @default.
- W2516055678 hasPublicationYear "2016" @default.
- W2516055678 type Work @default.
- W2516055678 sameAs 2516055678 @default.
- W2516055678 citedByCount "10" @default.
- W2516055678 countsByYear W25160556782017 @default.
- W2516055678 countsByYear W25160556782018 @default.
- W2516055678 countsByYear W25160556782020 @default.
- W2516055678 countsByYear W25160556782021 @default.
- W2516055678 countsByYear W25160556782022 @default.
- W2516055678 countsByYear W25160556782023 @default.
- W2516055678 crossrefType "proceedings-article" @default.
- W2516055678 hasAuthorship W2516055678A5001694519 @default.
- W2516055678 hasAuthorship W2516055678A5007955173 @default.
- W2516055678 hasAuthorship W2516055678A5065366930 @default.
- W2516055678 hasAuthorship W2516055678A5069988231 @default.
- W2516055678 hasAuthorship W2516055678A5082450455 @default.
- W2516055678 hasBestOaLocation W25160556781 @default.
- W2516055678 hasConcept C118552586 @default.
- W2516055678 hasConcept C144024400 @default.
- W2516055678 hasConcept C15744967 @default.
- W2516055678 hasConcept C19165224 @default.
- W2516055678 hasConcept C24845683 @default.
- W2516055678 hasConcept C2777016617 @default.
- W2516055678 hasConcept C2780665704 @default.
- W2516055678 hasConcept C41008148 @default.
- W2516055678 hasConceptScore W2516055678C118552586 @default.
- W2516055678 hasConceptScore W2516055678C144024400 @default.
- W2516055678 hasConceptScore W2516055678C15744967 @default.
- W2516055678 hasConceptScore W2516055678C19165224 @default.
- W2516055678 hasConceptScore W2516055678C24845683 @default.
- W2516055678 hasConceptScore W2516055678C2777016617 @default.
- W2516055678 hasConceptScore W2516055678C2780665704 @default.
- W2516055678 hasConceptScore W2516055678C41008148 @default.
- W2516055678 hasLocation W25160556781 @default.
- W2516055678 hasOpenAccess W2516055678 @default.
- W2516055678 hasPrimaryLocation W25160556781 @default.
- W2516055678 hasRelatedWork W1981216309 @default.
- W2516055678 hasRelatedWork W1992320422 @default.
- W2516055678 hasRelatedWork W2008351457 @default.
- W2516055678 hasRelatedWork W2041747241 @default.
- W2516055678 hasRelatedWork W2075849703 @default.
- W2516055678 hasRelatedWork W2128541546 @default.
- W2516055678 hasRelatedWork W2748952813 @default.
- W2516055678 hasRelatedWork W2899084033 @default.
- W2516055678 hasRelatedWork W2943032816 @default.
- W2516055678 hasRelatedWork W4365505225 @default.
- W2516055678 isParatext "false" @default.
- W2516055678 isRetracted "false" @default.
- W2516055678 magId "2516055678" @default.
- W2516055678 workType "article" @default.