Matches in SemOpenAlex for { <https://semopenalex.org/work/W2516615552> ?p ?o ?g. }
- W2516615552 abstract "We investigate the parallel complexity of VLSI (very large scale integration) CAD (computer aided design) synthesis problems. Parallel algorithms are very appropriate in VLSI CAD because computationally intensive optimization methods are needed to derive ``good'''' chip layouts. We find that for many problems with polynomial-time serial complexity, it is possible to find an efficient parallel algorithm that runs in polylogarithmic time. We illustrate this by parallelizing the ``left-edge'''' channel routing algorithm and the one-dimensional constraint-graph compaction algorithm. Curiously enough, we find P-hard, or inherently difficult-to-parallelize algorithms when certain key heuristics are used to get approximate solutions to NP-complete problems. In particular, we show that many local search heuristics for problems related to VLSI placement are P-hard or P-complete. These include the Kernighan-Lin heuristic and the simulated annealing heuristic for graph partitioning. We show that local search heuristics for grid embeddings and hypercube embeddings based on vertex swaps are P-hard, as are any local search heuristics that minimize the number of column conflicts in a channel routing by accepting cost-improving swaps of tracks or subtracks. We believe that the P-hardness reductions we provide in this thesis can be extended to include many other important applications of local search heuristics. Local search heuristics have been established as the method of choice for many optimization problems whenever very good solutions are desired. Local search heuristics are also among the most time-consuming bottlenecks in VLSI CAD systems, and would benefit greatly from parallel speedup. Our P-hardness results make it unlikely, however, that the exact parallel equivalent of a local search heuristic will be found that can find even a local minimum-cost solution in polylogarithmic time. The P-hardness results also put into perspective experimental results reported in the literature: attempts to construct the exact parallel equivalent of serial simulated-annealing-based heuristics for graph embedding have yielded disappointing parallel speedups. We introduce the massively parallel {it Mob} heuristic and report on experiments on the CM-2 Connection Machine. The design of the {it Mob} heuristic was influenced by the P-hardness results. {it Mob} can execute many moves of a local search heuristic in parallel. We applied our heuristic to the graph-partitioning, grid and hypercube-embedding problems, and report on an extensive series of experiments on the 32K-processor CM-2 Connection Machine that shows impressive reductions in edge costs. To obtain solutions that are within 5 heuristic needed less than nine minutes of computation time on random graphs of two million edges, and the {it Mob} grid and hypercube embedding heuristics needed less than 30 minutes on random graphs of one million edges. Due to excessive run times, heuristics reported previously in the lit" @default.
- W2516615552 created "2016-09-16" @default.
- W2516615552 creator A5040835377 @default.
- W2516615552 date "1991-05-01" @default.
- W2516615552 modified "2023-09-27" @default.
- W2516615552 title "Parallel VLSI synthesis" @default.
- W2516615552 cites W126736364 @default.
- W2516615552 cites W13002530 @default.
- W2516615552 cites W130296004 @default.
- W2516615552 cites W1493041473 @default.
- W2516615552 cites W1495059240 @default.
- W2516615552 cites W1513400187 @default.
- W2516615552 cites W1523409994 @default.
- W2516615552 cites W1533538517 @default.
- W2516615552 cites W1549512359 @default.
- W2516615552 cites W1560383649 @default.
- W2516615552 cites W157896004 @default.
- W2516615552 cites W1581351881 @default.
- W2516615552 cites W1591108399 @default.
- W2516615552 cites W1602261589 @default.
- W2516615552 cites W1606094340 @default.
- W2516615552 cites W161217653 @default.
- W2516615552 cites W1808600260 @default.
- W2516615552 cites W1836810876 @default.
- W2516615552 cites W190039197 @default.
- W2516615552 cites W1972261691 @default.
- W2516615552 cites W1977477009 @default.
- W2516615552 cites W1979306010 @default.
- W2516615552 cites W1979641885 @default.
- W2516615552 cites W1980746862 @default.
- W2516615552 cites W1981234161 @default.
- W2516615552 cites W1987980734 @default.
- W2516615552 cites W2000049725 @default.
- W2516615552 cites W2002330922 @default.
- W2516615552 cites W2003302587 @default.
- W2516615552 cites W2003346537 @default.
- W2516615552 cites W2007519459 @default.
- W2516615552 cites W2008283823 @default.
- W2516615552 cites W2009121158 @default.
- W2516615552 cites W2009551128 @default.
- W2516615552 cites W2010346244 @default.
- W2516615552 cites W2011039300 @default.
- W2516615552 cites W2017205387 @default.
- W2516615552 cites W2020580827 @default.
- W2516615552 cites W2022272738 @default.
- W2516615552 cites W2024060531 @default.
- W2516615552 cites W2025731635 @default.
- W2516615552 cites W2033562398 @default.
- W2516615552 cites W2036265926 @default.
- W2516615552 cites W2037423558 @default.
- W2516615552 cites W2045271686 @default.
- W2516615552 cites W2047422346 @default.
- W2516615552 cites W2050394746 @default.
- W2516615552 cites W2056760934 @default.
- W2516615552 cites W2059442002 @default.
- W2516615552 cites W2059985428 @default.
- W2516615552 cites W2060595167 @default.
- W2516615552 cites W2062459871 @default.
- W2516615552 cites W2067002313 @default.
- W2516615552 cites W2069489095 @default.
- W2516615552 cites W2073067110 @default.
- W2516615552 cites W2073391983 @default.
- W2516615552 cites W2078062983 @default.
- W2516615552 cites W2078580055 @default.
- W2516615552 cites W2081628699 @default.
- W2516615552 cites W2082248799 @default.
- W2516615552 cites W2083381826 @default.
- W2516615552 cites W2087323281 @default.
- W2516615552 cites W2087977509 @default.
- W2516615552 cites W2088956149 @default.
- W2516615552 cites W2089062581 @default.
- W2516615552 cites W2095117703 @default.
- W2516615552 cites W2096827683 @default.
- W2516615552 cites W2097864833 @default.
- W2516615552 cites W2103981148 @default.
- W2516615552 cites W2104561942 @default.
- W2516615552 cites W2110372443 @default.
- W2516615552 cites W2110514755 @default.
- W2516615552 cites W2112397134 @default.
- W2516615552 cites W2120104755 @default.
- W2516615552 cites W2120542406 @default.
- W2516615552 cites W2123303790 @default.
- W2516615552 cites W2124526408 @default.
- W2516615552 cites W2126641717 @default.
- W2516615552 cites W2128193809 @default.
- W2516615552 cites W2131335816 @default.
- W2516615552 cites W2134008688 @default.
- W2516615552 cites W2135030554 @default.
- W2516615552 cites W2137239103 @default.
- W2516615552 cites W2141389982 @default.
- W2516615552 cites W2143462372 @default.
- W2516615552 cites W2143474538 @default.
- W2516615552 cites W2144483873 @default.
- W2516615552 cites W2146488304 @default.
- W2516615552 cites W2149294362 @default.
- W2516615552 cites W2149977307 @default.
- W2516615552 cites W2150912178 @default.
- W2516615552 cites W2150983132 @default.
- W2516615552 cites W2152209591 @default.
- W2516615552 cites W2158365276 @default.