Matches in SemOpenAlex for { <https://semopenalex.org/work/W2516620248> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2516620248 endingPage "504" @default.
- W2516620248 startingPage "494" @default.
- W2516620248 abstract "Recent developments like the movements of open access and open data and the unprecedented growth of data, which has come forward as Big Data, have shifted focus to methods to effectively handle such data for use in agro-environmental research. Big Data technologies, together with the increased use of cloud based and high performance computing, create new opportunities for data intensive science in the multi-disciplinary agro-environmental domain. A theoretical framework is presented to structure and analyse data-intensive cases and is applied to three case studies, together covering a broad range of technologies and aspects related to Big Data usage. The case studies indicate that most persistent issues in the area of data-intensive research evolve around capturing the huge heterogeneity of interdisciplinary data and around creating trust between data providers and data users. It is therefore recommended that efforts from the agro-environmental domain concentrate on the issues of variety and veracity. A theoretical framework is presented to frame and analyse Big Data use cases.Three case studies related to agro-environmental modelling, covering the range of Big Data characteristics are analysed.Most persistent issues in agro-environmental science concern variety and veracity.Approaches to deal with variety and veracity issues are presented." @default.
- W2516620248 created "2016-09-16" @default.
- W2516620248 creator A5022706260 @default.
- W2516620248 creator A5038803118 @default.
- W2516620248 creator A5050544636 @default.
- W2516620248 creator A5061411754 @default.
- W2516620248 creator A5080883051 @default.
- W2516620248 date "2016-10-01" @default.
- W2516620248 modified "2023-10-09" @default.
- W2516620248 title "Analysis of Big Data technologies for use in agro-environmental science" @default.
- W2516620248 cites W1500693574 @default.
- W2516620248 cites W1968204092 @default.
- W2516620248 cites W1999167944 @default.
- W2516620248 cites W2004306039 @default.
- W2516620248 cites W2051512952 @default.
- W2516620248 cites W2080226292 @default.
- W2516620248 cites W2093502368 @default.
- W2516620248 cites W2110966879 @default.
- W2516620248 cites W2118218496 @default.
- W2516620248 cites W2123418328 @default.
- W2516620248 cites W2134901722 @default.
- W2516620248 cites W2140138161 @default.
- W2516620248 cites W2145454450 @default.
- W2516620248 cites W2162231643 @default.
- W2516620248 cites W5137983 @default.
- W2516620248 doi "https://doi.org/10.1016/j.envsoft.2016.07.017" @default.
- W2516620248 hasPublicationYear "2016" @default.
- W2516620248 type Work @default.
- W2516620248 sameAs 2516620248 @default.
- W2516620248 citedByCount "134" @default.
- W2516620248 countsByYear W25166202482016 @default.
- W2516620248 countsByYear W25166202482017 @default.
- W2516620248 countsByYear W25166202482018 @default.
- W2516620248 countsByYear W25166202482019 @default.
- W2516620248 countsByYear W25166202482020 @default.
- W2516620248 countsByYear W25166202482021 @default.
- W2516620248 countsByYear W25166202482022 @default.
- W2516620248 countsByYear W25166202482023 @default.
- W2516620248 crossrefType "journal-article" @default.
- W2516620248 hasAuthorship W2516620248A5022706260 @default.
- W2516620248 hasAuthorship W2516620248A5038803118 @default.
- W2516620248 hasAuthorship W2516620248A5050544636 @default.
- W2516620248 hasAuthorship W2516620248A5061411754 @default.
- W2516620248 hasAuthorship W2516620248A5080883051 @default.
- W2516620248 hasBestOaLocation W25166202481 @default.
- W2516620248 hasConcept C124101348 @default.
- W2516620248 hasConcept C2522767166 @default.
- W2516620248 hasConcept C39432304 @default.
- W2516620248 hasConcept C41008148 @default.
- W2516620248 hasConcept C75684735 @default.
- W2516620248 hasConceptScore W2516620248C124101348 @default.
- W2516620248 hasConceptScore W2516620248C2522767166 @default.
- W2516620248 hasConceptScore W2516620248C39432304 @default.
- W2516620248 hasConceptScore W2516620248C41008148 @default.
- W2516620248 hasConceptScore W2516620248C75684735 @default.
- W2516620248 hasLocation W25166202481 @default.
- W2516620248 hasOpenAccess W2516620248 @default.
- W2516620248 hasPrimaryLocation W25166202481 @default.
- W2516620248 hasRelatedWork W1039292361 @default.
- W2516620248 hasRelatedWork W1996408511 @default.
- W2516620248 hasRelatedWork W2397053934 @default.
- W2516620248 hasRelatedWork W2577361510 @default.
- W2516620248 hasRelatedWork W2617449561 @default.
- W2516620248 hasRelatedWork W2767632110 @default.
- W2516620248 hasRelatedWork W280853923 @default.
- W2516620248 hasRelatedWork W2808989540 @default.
- W2516620248 hasRelatedWork W2899084033 @default.
- W2516620248 hasRelatedWork W2551093110 @default.
- W2516620248 hasVolume "84" @default.
- W2516620248 isParatext "false" @default.
- W2516620248 isRetracted "false" @default.
- W2516620248 magId "2516620248" @default.
- W2516620248 workType "article" @default.