Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517014712> ?p ?o ?g. }
- W2517014712 endingPage "13" @default.
- W2517014712 startingPage "1" @default.
- W2517014712 abstract "Variable selection plays a pivotal role in the quantitative analysis of near-infrared (NIR) spectra with large number of variables and relatively few samples. In this study, a novel algorithm, namely variable permutation population analysis (VPPA) which combines variable permutation, model population analysis (MPA) and exponentially decreasing function (EDF), was proposed for variable selection to improve the prediction performance in multivariate spectral calibration. This method builds a large number of sub-datasets by Monte Carlo sampling (MCS) strategy in both sample space and variable space firstly, and the importance of each variable is subsequently evaluated using the difference value order of the corresponding partial least squares (PLS) model prediction error before and after the variable permutation. Next, EDF is applied to eliminate the relatively uninformative variables by force. Ultimately, cross validation is utilized to choose the optimal variable subset. A complete methodology for variable selection is constructed through the above four procedures. Three near infrared (NIR) datasets were presented to illustrate the proposed method and evaluate its performance. While PLS is used as the modeling method, the results reveal that VPPA is a potential variable selection method which shows better prediction performance when compared with conventional PLS, subwindow permutation analysis PLS (SPA-PLS), Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS), competitive adaptive reweighted sampling PLS (CARS-PLS) and genetic algorithm PLS (GA-PLS). Moreover, the proposed approach employs fewer variables than these variable optimization methods mentioned above. Therefore, the VPPA technique can be recommended for practical implementation in multivariate calibration of NIR spectra." @default.
- W2517014712 created "2016-09-16" @default.
- W2517014712 creator A5022526821 @default.
- W2517014712 creator A5032483925 @default.
- W2517014712 creator A5042934128 @default.
- W2517014712 creator A5043550251 @default.
- W2517014712 creator A5045647383 @default.
- W2517014712 creator A5058044263 @default.
- W2517014712 creator A5087480048 @default.
- W2517014712 date "2016-11-01" @default.
- W2517014712 modified "2023-10-18" @default.
- W2517014712 title "An efficient variable selection method based on variable permutation and model population analysis for multivariate calibration of NIR spectra" @default.
- W2517014712 cites W1970542683 @default.
- W2517014712 cites W1971529025 @default.
- W2517014712 cites W1972978214 @default.
- W2517014712 cites W1975579380 @default.
- W2517014712 cites W1985941806 @default.
- W2517014712 cites W1992821384 @default.
- W2517014712 cites W1997270149 @default.
- W2517014712 cites W2001179019 @default.
- W2517014712 cites W2007808016 @default.
- W2517014712 cites W2011406720 @default.
- W2517014712 cites W2017422910 @default.
- W2517014712 cites W2018338598 @default.
- W2517014712 cites W2022516935 @default.
- W2517014712 cites W2042672252 @default.
- W2517014712 cites W2043689097 @default.
- W2517014712 cites W2047472152 @default.
- W2517014712 cites W2052600159 @default.
- W2517014712 cites W2054403851 @default.
- W2517014712 cites W2064152727 @default.
- W2517014712 cites W2084169316 @default.
- W2517014712 cites W2084559921 @default.
- W2517014712 cites W2084649778 @default.
- W2517014712 cites W2138309709 @default.
- W2517014712 cites W2170539756 @default.
- W2517014712 doi "https://doi.org/10.1016/j.chemolab.2016.08.006" @default.
- W2517014712 hasPublicationYear "2016" @default.
- W2517014712 type Work @default.
- W2517014712 sameAs 2517014712 @default.
- W2517014712 citedByCount "23" @default.
- W2517014712 countsByYear W25170147122017 @default.
- W2517014712 countsByYear W25170147122018 @default.
- W2517014712 countsByYear W25170147122019 @default.
- W2517014712 countsByYear W25170147122020 @default.
- W2517014712 countsByYear W25170147122021 @default.
- W2517014712 countsByYear W25170147122022 @default.
- W2517014712 countsByYear W25170147122023 @default.
- W2517014712 crossrefType "journal-article" @default.
- W2517014712 hasAuthorship W2517014712A5022526821 @default.
- W2517014712 hasAuthorship W2517014712A5032483925 @default.
- W2517014712 hasAuthorship W2517014712A5042934128 @default.
- W2517014712 hasAuthorship W2517014712A5043550251 @default.
- W2517014712 hasAuthorship W2517014712A5045647383 @default.
- W2517014712 hasAuthorship W2517014712A5058044263 @default.
- W2517014712 hasAuthorship W2517014712A5087480048 @default.
- W2517014712 hasConcept C105795698 @default.
- W2517014712 hasConcept C11413529 @default.
- W2517014712 hasConcept C115973184 @default.
- W2517014712 hasConcept C121332964 @default.
- W2517014712 hasConcept C134306372 @default.
- W2517014712 hasConcept C144024400 @default.
- W2517014712 hasConcept C148483581 @default.
- W2517014712 hasConcept C149923435 @default.
- W2517014712 hasConcept C154945302 @default.
- W2517014712 hasConcept C161584116 @default.
- W2517014712 hasConcept C165838908 @default.
- W2517014712 hasConcept C169272836 @default.
- W2517014712 hasConcept C182365436 @default.
- W2517014712 hasConcept C19499675 @default.
- W2517014712 hasConcept C21308566 @default.
- W2517014712 hasConcept C22354355 @default.
- W2517014712 hasConcept C24890656 @default.
- W2517014712 hasConcept C2776214188 @default.
- W2517014712 hasConcept C2908647359 @default.
- W2517014712 hasConcept C33923547 @default.
- W2517014712 hasConcept C41008148 @default.
- W2517014712 hasConcept C81917197 @default.
- W2517014712 hasConcept C84140500 @default.
- W2517014712 hasConceptScore W2517014712C105795698 @default.
- W2517014712 hasConceptScore W2517014712C11413529 @default.
- W2517014712 hasConceptScore W2517014712C115973184 @default.
- W2517014712 hasConceptScore W2517014712C121332964 @default.
- W2517014712 hasConceptScore W2517014712C134306372 @default.
- W2517014712 hasConceptScore W2517014712C144024400 @default.
- W2517014712 hasConceptScore W2517014712C148483581 @default.
- W2517014712 hasConceptScore W2517014712C149923435 @default.
- W2517014712 hasConceptScore W2517014712C154945302 @default.
- W2517014712 hasConceptScore W2517014712C161584116 @default.
- W2517014712 hasConceptScore W2517014712C165838908 @default.
- W2517014712 hasConceptScore W2517014712C169272836 @default.
- W2517014712 hasConceptScore W2517014712C182365436 @default.
- W2517014712 hasConceptScore W2517014712C19499675 @default.
- W2517014712 hasConceptScore W2517014712C21308566 @default.
- W2517014712 hasConceptScore W2517014712C22354355 @default.
- W2517014712 hasConceptScore W2517014712C24890656 @default.
- W2517014712 hasConceptScore W2517014712C2776214188 @default.
- W2517014712 hasConceptScore W2517014712C2908647359 @default.