Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517120592> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2517120592 endingPage "25" @default.
- W2517120592 startingPage "17" @default.
- W2517120592 abstract "Real world datasets contain both numerical and categorical attributes. Very often missing values are present in both numerical and categorical attributes. The missing data has to be imputed as the inferences made from complete data are often more accurate and reliable than those made from incomplete data [15]. Also, most of the data mining algorithms cannot work with incomplete datasets. The paper proposes a novel soft computing architecture for categorical data imputation. The proposed imputation technique employs Probabilistic Neural Network (PNN) preceded by mode for imputing the missing categorical data. The effectiveness of the proposed imputation technique is tested on 4 benchmark datasets under the 10 fold-cross validation framework. In all datasets, except Mushroom, which are complete, some values, which are randomly removed, are treated as missing values. The performance of the proposed imputation technique is compared with that of 3 statistical and 3 machine learning methods for data imputation. The comparison of the mode+PNN imputation technique with mode, K-Nearest Neighbor (K-NN), Hot Deck (HD), Naive Bayes, Random Forest (RF) and J48 (Decision Tree) imputation techniques demonstrates that the proposed method is efficient, especially when the percentage of missing values is high, for records having more than one missing value and for records having a large number of categories for each categorical variable." @default.
- W2517120592 created "2016-09-16" @default.
- W2517120592 creator A5018887120 @default.
- W2517120592 creator A5073505371 @default.
- W2517120592 date "2016-12-01" @default.
- W2517120592 modified "2023-09-27" @default.
- W2517120592 title "Probabilistic neural network based categorical data imputation" @default.
- W2517120592 cites W1849547295 @default.
- W2517120592 cites W1964168965 @default.
- W2517120592 cites W1967960963 @default.
- W2517120592 cites W1982455384 @default.
- W2517120592 cites W2002621767 @default.
- W2517120592 cites W2002697805 @default.
- W2517120592 cites W2013743063 @default.
- W2517120592 cites W2023990771 @default.
- W2517120592 cites W2024101422 @default.
- W2517120592 cites W2044478943 @default.
- W2517120592 cites W2053898507 @default.
- W2517120592 cites W2055621992 @default.
- W2517120592 cites W2058128280 @default.
- W2517120592 cites W2065594113 @default.
- W2517120592 cites W2074662725 @default.
- W2517120592 cites W2096863518 @default.
- W2517120592 cites W2104637242 @default.
- W2517120592 cites W2112122095 @default.
- W2517120592 cites W2117028686 @default.
- W2517120592 cites W2119299083 @default.
- W2517120592 cites W2122169890 @default.
- W2517120592 cites W2122752936 @default.
- W2517120592 cites W2146332392 @default.
- W2517120592 cites W2151223736 @default.
- W2517120592 cites W2151259332 @default.
- W2517120592 cites W2156746747 @default.
- W2517120592 cites W2159798994 @default.
- W2517120592 cites W2162635690 @default.
- W2517120592 cites W3123976517 @default.
- W2517120592 doi "https://doi.org/10.1016/j.neucom.2016.08.044" @default.
- W2517120592 hasPublicationYear "2016" @default.
- W2517120592 type Work @default.
- W2517120592 sameAs 2517120592 @default.
- W2517120592 citedByCount "51" @default.
- W2517120592 countsByYear W25171205922016 @default.
- W2517120592 countsByYear W25171205922017 @default.
- W2517120592 countsByYear W25171205922018 @default.
- W2517120592 countsByYear W25171205922019 @default.
- W2517120592 countsByYear W25171205922020 @default.
- W2517120592 countsByYear W25171205922021 @default.
- W2517120592 countsByYear W25171205922022 @default.
- W2517120592 countsByYear W25171205922023 @default.
- W2517120592 crossrefType "journal-article" @default.
- W2517120592 hasAuthorship W2517120592A5018887120 @default.
- W2517120592 hasAuthorship W2517120592A5073505371 @default.
- W2517120592 hasConcept C119857082 @default.
- W2517120592 hasConcept C124101348 @default.
- W2517120592 hasConcept C153180895 @default.
- W2517120592 hasConcept C154945302 @default.
- W2517120592 hasConcept C41008148 @default.
- W2517120592 hasConcept C49937458 @default.
- W2517120592 hasConcept C50644808 @default.
- W2517120592 hasConcept C5274069 @default.
- W2517120592 hasConcept C58041806 @default.
- W2517120592 hasConcept C9357733 @default.
- W2517120592 hasConceptScore W2517120592C119857082 @default.
- W2517120592 hasConceptScore W2517120592C124101348 @default.
- W2517120592 hasConceptScore W2517120592C153180895 @default.
- W2517120592 hasConceptScore W2517120592C154945302 @default.
- W2517120592 hasConceptScore W2517120592C41008148 @default.
- W2517120592 hasConceptScore W2517120592C49937458 @default.
- W2517120592 hasConceptScore W2517120592C50644808 @default.
- W2517120592 hasConceptScore W2517120592C5274069 @default.
- W2517120592 hasConceptScore W2517120592C58041806 @default.
- W2517120592 hasConceptScore W2517120592C9357733 @default.
- W2517120592 hasLocation W25171205921 @default.
- W2517120592 hasOpenAccess W2517120592 @default.
- W2517120592 hasPrimaryLocation W25171205921 @default.
- W2517120592 hasRelatedWork W1971356345 @default.
- W2517120592 hasRelatedWork W1973315244 @default.
- W2517120592 hasRelatedWork W21744023 @default.
- W2517120592 hasRelatedWork W252385730 @default.
- W2517120592 hasRelatedWork W2574666645 @default.
- W2517120592 hasRelatedWork W3034856749 @default.
- W2517120592 hasRelatedWork W3038836755 @default.
- W2517120592 hasRelatedWork W3128157534 @default.
- W2517120592 hasRelatedWork W3217267892 @default.
- W2517120592 hasRelatedWork W995546530 @default.
- W2517120592 hasVolume "218" @default.
- W2517120592 isParatext "false" @default.
- W2517120592 isRetracted "false" @default.
- W2517120592 magId "2517120592" @default.
- W2517120592 workType "article" @default.