Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517233404> ?p ?o ?g. }
- W2517233404 abstract "An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an {it instance-dependent} effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to $k$-step contrastive divergence (CD-$k$) with $k$ up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here." @default.
- W2517233404 created "2016-09-16" @default.
- W2517233404 creator A5014771362 @default.
- W2517233404 creator A5031060462 @default.
- W2517233404 creator A5057199457 @default.
- W2517233404 creator A5082678604 @default.
- W2517233404 date "2016-08-09" @default.
- W2517233404 modified "2023-10-12" @default.
- W2517233404 title "Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning" @default.
- W2517233404 cites W105622892 @default.
- W2517233404 cites W1488590474 @default.
- W2517233404 cites W1769909511 @default.
- W2517233404 cites W1904238065 @default.
- W2517233404 cites W1957216077 @default.
- W2517233404 cites W1958272588 @default.
- W2517233404 cites W1979392010 @default.
- W2517233404 cites W1980289135 @default.
- W2517233404 cites W1983624953 @default.
- W2517233404 cites W1988369744 @default.
- W2517233404 cites W2006098914 @default.
- W2517233404 cites W2014441733 @default.
- W2517233404 cites W2024860775 @default.
- W2517233404 cites W2033290519 @default.
- W2517233404 cites W2042127289 @default.
- W2517233404 cites W2059151864 @default.
- W2517233404 cites W2064630666 @default.
- W2517233404 cites W2072211488 @default.
- W2517233404 cites W2103956991 @default.
- W2517233404 cites W2105614108 @default.
- W2517233404 cites W2116064496 @default.
- W2517233404 cites W2118518847 @default.
- W2517233404 cites W2124641450 @default.
- W2517233404 cites W2138626542 @default.
- W2517233404 cites W2147238273 @default.
- W2517233404 cites W2155728415 @default.
- W2517233404 cites W2156740722 @default.
- W2517233404 cites W2160400687 @default.
- W2517233404 cites W2169966170 @default.
- W2517233404 cites W2253909748 @default.
- W2517233404 cites W2919115771 @default.
- W2517233404 cites W2963426933 @default.
- W2517233404 cites W3098571064 @default.
- W2517233404 cites W3100492388 @default.
- W2517233404 cites W3103325978 @default.
- W2517233404 cites W3122406616 @default.
- W2517233404 cites W4231109964 @default.
- W2517233404 doi "https://doi.org/10.1103/physreva.94.022308" @default.
- W2517233404 hasPublicationYear "2016" @default.
- W2517233404 type Work @default.
- W2517233404 sameAs 2517233404 @default.
- W2517233404 citedByCount "153" @default.
- W2517233404 countsByYear W25172334042016 @default.
- W2517233404 countsByYear W25172334042017 @default.
- W2517233404 countsByYear W25172334042018 @default.
- W2517233404 countsByYear W25172334042019 @default.
- W2517233404 countsByYear W25172334042020 @default.
- W2517233404 countsByYear W25172334042021 @default.
- W2517233404 countsByYear W25172334042022 @default.
- W2517233404 countsByYear W25172334042023 @default.
- W2517233404 crossrefType "journal-article" @default.
- W2517233404 hasAuthorship W2517233404A5014771362 @default.
- W2517233404 hasAuthorship W2517233404A5031060462 @default.
- W2517233404 hasAuthorship W2517233404A5057199457 @default.
- W2517233404 hasAuthorship W2517233404A5082678604 @default.
- W2517233404 hasBestOaLocation W25172334041 @default.
- W2517233404 hasConcept C106131492 @default.
- W2517233404 hasConcept C108583219 @default.
- W2517233404 hasConcept C11413529 @default.
- W2517233404 hasConcept C121332964 @default.
- W2517233404 hasConcept C121864883 @default.
- W2517233404 hasConcept C138885662 @default.
- W2517233404 hasConcept C140779682 @default.
- W2517233404 hasConcept C154945302 @default.
- W2517233404 hasConcept C192576344 @default.
- W2517233404 hasConcept C199354608 @default.
- W2517233404 hasConcept C207390915 @default.
- W2517233404 hasConcept C2524010 @default.
- W2517233404 hasConcept C2777210771 @default.
- W2517233404 hasConcept C31972630 @default.
- W2517233404 hasConcept C33923547 @default.
- W2517233404 hasConcept C35304006 @default.
- W2517233404 hasConcept C41008148 @default.
- W2517233404 hasConcept C41895202 @default.
- W2517233404 hasConcept C62520636 @default.
- W2517233404 hasConcept C84114770 @default.
- W2517233404 hasConceptScore W2517233404C106131492 @default.
- W2517233404 hasConceptScore W2517233404C108583219 @default.
- W2517233404 hasConceptScore W2517233404C11413529 @default.
- W2517233404 hasConceptScore W2517233404C121332964 @default.
- W2517233404 hasConceptScore W2517233404C121864883 @default.
- W2517233404 hasConceptScore W2517233404C138885662 @default.
- W2517233404 hasConceptScore W2517233404C140779682 @default.
- W2517233404 hasConceptScore W2517233404C154945302 @default.
- W2517233404 hasConceptScore W2517233404C192576344 @default.
- W2517233404 hasConceptScore W2517233404C199354608 @default.
- W2517233404 hasConceptScore W2517233404C207390915 @default.
- W2517233404 hasConceptScore W2517233404C2524010 @default.
- W2517233404 hasConceptScore W2517233404C2777210771 @default.
- W2517233404 hasConceptScore W2517233404C31972630 @default.
- W2517233404 hasConceptScore W2517233404C33923547 @default.