Matches in SemOpenAlex for { <https://semopenalex.org/work/W2517276543> ?p ?o ?g. }
- W2517276543 endingPage "12638" @default.
- W2517276543 startingPage "12630" @default.
- W2517276543 abstract "Soft sensors estimate values of difficult-to-measure process variables (y) from values of easy-to-measure process variables (X). Although adaptive soft sensors have been developed to reduce degradation of soft sensor models, noise in data has harmful effects to predictive ability of soft sensors. Many chemometric methods such as partial least-squares regression and support vector regression can handle noise. However, these methods do not consider characteristics of operating data or time-series data. Data measured closely in time have strong relationships and correlations. We propose to combine soft sensors with smoothing methods such as simple moving average, linearly weighted moving average, exponentially weighted moving average and Savitzky-Golay filtering. Before model construction and prediction, a smoothing method is applied to each X-variable. Case studies using simulated and industrial data sets confirm that the use of the proposed methods enables soft sensors to predict y-values smoothly and accurately." @default.
- W2517276543 created "2016-09-16" @default.
- W2517276543 creator A5082283686 @default.
- W2517276543 creator A5087461964 @default.
- W2517276543 date "2015-12-14" @default.
- W2517276543 modified "2023-10-02" @default.
- W2517276543 title "Smoothing-Combined Soft Sensors for Noise Reduction and Improvement of Predictive Ability" @default.
- W2517276543 cites W1574272989 @default.
- W2517276543 cites W1949974402 @default.
- W2517276543 cites W1967511636 @default.
- W2517276543 cites W1980775965 @default.
- W2517276543 cites W1986795354 @default.
- W2517276543 cites W1990384678 @default.
- W2517276543 cites W1992034315 @default.
- W2517276543 cites W1992530836 @default.
- W2517276543 cites W1996609740 @default.
- W2517276543 cites W2000651380 @default.
- W2517276543 cites W2053151905 @default.
- W2517276543 cites W2054177534 @default.
- W2517276543 cites W2058248416 @default.
- W2517276543 cites W2071626971 @default.
- W2517276543 cites W2073447193 @default.
- W2517276543 cites W2073503722 @default.
- W2517276543 cites W2077496324 @default.
- W2517276543 cites W2081168814 @default.
- W2517276543 cites W2084276796 @default.
- W2517276543 cites W2087285421 @default.
- W2517276543 cites W2089468765 @default.
- W2517276543 cites W2097980122 @default.
- W2517276543 cites W2108995755 @default.
- W2517276543 cites W2109606373 @default.
- W2517276543 cites W2121854064 @default.
- W2517276543 cites W2123603135 @default.
- W2517276543 cites W2126795580 @default.
- W2517276543 cites W2130086376 @default.
- W2517276543 cites W2145697300 @default.
- W2517276543 cites W2147062914 @default.
- W2517276543 cites W2318207467 @default.
- W2517276543 cites W2320749897 @default.
- W2517276543 cites W2321339439 @default.
- W2517276543 cites W2325189242 @default.
- W2517276543 cites W2325610192 @default.
- W2517276543 cites W2329931337 @default.
- W2517276543 cites W2620302040 @default.
- W2517276543 cites W2947626232 @default.
- W2517276543 doi "https://doi.org/10.1021/acs.iecr.5b03054" @default.
- W2517276543 hasPublicationYear "2015" @default.
- W2517276543 type Work @default.
- W2517276543 sameAs 2517276543 @default.
- W2517276543 citedByCount "15" @default.
- W2517276543 countsByYear W25172765432016 @default.
- W2517276543 countsByYear W25172765432017 @default.
- W2517276543 countsByYear W25172765432018 @default.
- W2517276543 countsByYear W25172765432019 @default.
- W2517276543 countsByYear W25172765432021 @default.
- W2517276543 countsByYear W25172765432022 @default.
- W2517276543 countsByYear W25172765432023 @default.
- W2517276543 crossrefType "journal-article" @default.
- W2517276543 hasAuthorship W2517276543A5082283686 @default.
- W2517276543 hasAuthorship W2517276543A5087461964 @default.
- W2517276543 hasConcept C105795698 @default.
- W2517276543 hasConcept C111335779 @default.
- W2517276543 hasConcept C111919701 @default.
- W2517276543 hasConcept C11413529 @default.
- W2517276543 hasConcept C115575686 @default.
- W2517276543 hasConcept C115961682 @default.
- W2517276543 hasConcept C119857082 @default.
- W2517276543 hasConcept C124101348 @default.
- W2517276543 hasConcept C133710760 @default.
- W2517276543 hasConcept C154945302 @default.
- W2517276543 hasConcept C175706884 @default.
- W2517276543 hasConcept C22354355 @default.
- W2517276543 hasConcept C2524010 @default.
- W2517276543 hasConcept C2780009758 @default.
- W2517276543 hasConcept C33923547 @default.
- W2517276543 hasConcept C3770464 @default.
- W2517276543 hasConcept C41008148 @default.
- W2517276543 hasConcept C98045186 @default.
- W2517276543 hasConcept C99498987 @default.
- W2517276543 hasConceptScore W2517276543C105795698 @default.
- W2517276543 hasConceptScore W2517276543C111335779 @default.
- W2517276543 hasConceptScore W2517276543C111919701 @default.
- W2517276543 hasConceptScore W2517276543C11413529 @default.
- W2517276543 hasConceptScore W2517276543C115575686 @default.
- W2517276543 hasConceptScore W2517276543C115961682 @default.
- W2517276543 hasConceptScore W2517276543C119857082 @default.
- W2517276543 hasConceptScore W2517276543C124101348 @default.
- W2517276543 hasConceptScore W2517276543C133710760 @default.
- W2517276543 hasConceptScore W2517276543C154945302 @default.
- W2517276543 hasConceptScore W2517276543C175706884 @default.
- W2517276543 hasConceptScore W2517276543C22354355 @default.
- W2517276543 hasConceptScore W2517276543C2524010 @default.
- W2517276543 hasConceptScore W2517276543C2780009758 @default.
- W2517276543 hasConceptScore W2517276543C33923547 @default.
- W2517276543 hasConceptScore W2517276543C3770464 @default.
- W2517276543 hasConceptScore W2517276543C41008148 @default.
- W2517276543 hasConceptScore W2517276543C98045186 @default.
- W2517276543 hasConceptScore W2517276543C99498987 @default.